簡易檢索 / 詳目顯示

研究生: 高健凱
Kao, Chain-Kai
論文名稱: 巨磁阻結合磁電開關在邏輯元件上的應用
Application of Giant Magnetic Resistance combine with Magnetoelectric Switching in Logic Device
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 61
中文關鍵詞: 巨磁阻磁電鐵電邏輯記憶體
外文關鍵詞: Giant Magnetoresistance, Magnetoelectric, Ferromagnet, logic in memory
相關次數: 點閱:141下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摩爾定律(Moore’s law),由 intel創始人Gordan Earle Moore提出。自1980年以來,半導體元件產業的發展遵循著Moore’s law不斷前進。儘管如此,隨著近年Moore’s law 的漸緩,找尋具有更低的開關能量,更高的元件效率及邏輯元件密度成為研究的重要指標。其中,磁力便是其中一個重要發展方向。
    本研究使用磁電開關 (Magnetoelectric switching)透過加入偏壓將電壓訊號轉換為自旋訊號,並透過巨磁阻 (Giant Magnetoresistance)將自旋訊號透過電阻值讀出,目的在取代單純使用電流控制的邏輯元件以達到低的啟動電壓及較小的漏電流且同時具有邏輯元件(Logic device)與記憶體元件(Memory device)的特性。
    製程上使用脈衝雷射沉積技術(Pulsed Laser Deposition, PLD)沉積高品質的磁電耦合層(Magnetoelectric layer),鐵電層(Ferromagnetic layer)以及巨磁阻結構,再利用感應耦合電漿蝕刻技術(Reactive ion Etching, RIE)通過氬離子(Ar)的撞擊,蝕刻元件形狀,最後沉積鉑(Pt)做為電極以及保護層。
    各製程結束後透過原子力顯微鏡(Atomic Force Microscope, AFM), 穿透式電子顯微鏡(Transmission electron microscope, TEM), 聚焦電子束(Focused Ion Beam, FIB), 能量散射X射線譜(Energy-dispersive X-ray analysis, EDS) 做薄膜量測,透過磁光克爾效應(Magneto-optic Kerr effect, MOKE) 量測磁滯曲線,透過探針及混和訊號示波器量測元件電性。
    本論文著重在元件的製造與排除製程上的困難,並針對其結果進行分析與討論。

    Moore’s Law, which is proposed by Interl founder “Gordan Earle Moore. Since 1980, the development of the semiconductor device industry has followed Moore’s Law. However, as the Moore’s law growing slowly, finding a device with lower switching energy, higher efficiency and higher device density has become one of the most important indicators. Magnetic force driving device is one of the important development directions.
    This study is about combining the magnetoelectric switch and Giant Magnetoresistance into a device which is driving by magnetic force. Magnetoelectric switch coverts the input voltage into spin signal. Then read the signal through the resistance value which changing by Giant Magnetoresistance. This device has low driving voltage, small leakage current and having the characteristics both of logic device and memory device.
    About the fabrication process we are using Pulse Laser Deposition (PLD) deposits high-quality magnetoelectric layer, ferromagnetic layer and giant magnetoresistance structure. After deposition, we etch the device into the shape of double cross through Reaction-ion Etching system which impact the material with argon ions. In the end, we deposit the platinum as the electrode and the protective layer.
    After each process, we measure the layer of device quality using Atomic Force Microscope (AFM), Transmission electron microscope (TEM), Focused Ion Beam (FIB), Energy-dispersive X-Ray analysis (EDS), X-Ray Diffractometer (XRD), X-Ray Reflection meter (XRR). Measure the magnetic properties by Magnetic force microscope (MFM) and Magneto-Optical Kerr Effect (MOKE).
    In this research we focus on the fabrication process and the solutions of the difficulties when we manufacture and analyze and discuss the result.

    摘要 Ⅰ Abstract III Content Ⅴ Figure Captions ⅥI Chapter 1 Introduction 1 1-1 Logic IC, Memory IC 3 1-2 Application of Magnetic material 4 1-3 Spintronic Technology 7 Chapter 2 Principle and Literature review 10 2-1 Magnetoelectric 10 2-1-1 Perovskite 10 2-1-2 Magnetoelectric properties of multiferroics 11 2-1-3 Magnetoelectric switch 12 2-2 Magnetoresistance 14 2-2-1 Giant Magnetoresistance 15 2-2-2 Tunneling Magnetoresistance (TMR) 17 Chapter 3 Experimental procedures 18 3-1 Structure of component 18 3-2 Process of component 19 3-2-1 Deposition 19 3-2-2 Lithography and Etching 20 3-2-3 Silver glue and copper line 21 3-3 Equipment 21 3-3-1 Process equipment 22 3-3-2 Measuring equipment 26 Chapter 4 Results and Discussion 31 4-1 BiFeO3 – SrRuO3 – SrTiO3 film 31 4-1-1 SrRuO3 – SrTiO3 film 32 4-1-2 BiFeO3 film 34 4-2 NiFe – Cu - NiFe film 40 4-3 Lithography and etching process 46 4-3-1 Lithography technology 46 4-3-2 Etching technology 47 4-4 Silver glue and copper line 53 Chapter 5 Conclusions 55 Reference 56

    [1] S.A. Tella, M.l. Younis(2020). Toward cascable MEMs logic device based on model localization. Sensors and Actuator A: Physical 112367.
    [2] Ruslan Polyakov (2019). Thinking Paradigm Shift: Innovative Ecosystems Creative Class And Growth Drivers. A International Scientific Conference "Global Challenges and Prospects of the Modern Economic Development" 2357-1330
    [3] W. Pauli, “The connection between spin and statistics,” Phys. Rev., vol. 58, no. 8, p. 716, 1940.
    [4] L. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,” in Perspectives in Theoretical Physics, Elsevier, 1992, pp. 51–65.
    [5] L. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,” in Perspectives in Theoretical Physics, Elsevier, 1992, pp. 51–65.
    [6] R. Meservey, D. Paraskevopoulos, and P. M. Tedrow, “Correlation between Spin Polarization of Tunnel Currents from 3 d Ferromagnets and Their Magnetic Moments,” Phys. Rev. Lett., vol. 37, no. 13, p. 858, 1976
    [7] M. Julliere, “Tunneling between ferromagnetic films,” Phys. Lett. A, vol. 54, no. 3, pp. 225–226, 1975.
    [8] M. N. Baibich et al., “Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices,” Phys. Rev. Lett., vol. 61, no. 21, p. 2472, 1988.
    [9] E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current-induced switching of domains in magnetic multilayer devices,” Science (80)., vol. 285, no. 5429, pp. 867–870, 1999
    [10] S. Zhang and Z. Li, “Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets,” Phys. Rev. Lett., vol. 93, no. 12, p. 27204, 2004.
    [11] T. Maruyama et al., “Large voltage-induced magnetic anisotropy change in a few atomic layers of iron,” Nat. Nanotechnol., vol. 4, no. 3, pp. 158–161, 2009.
    [12] P. K. Amiri and K. L. Wang, “Voltage-controlled magnetic anisotropy in spintronic devices,” in Spin, 2012, vol. 2, no. 03, p. 1240002
    [13] X. Li et al., “Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB| MgO interface,” Appl. Phys. Lett., vol. 110, no. 5, p. 52401, 2017.
    [14] X. Li et al., “Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB| MgO interface,” Appl. Phys. Lett., vol. 110, no. 5, p. 52401, 2017.
    [15] X. Li et al., “Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB| MgO interface,” Appl. Phys. Lett., vol. 110, no. 5, p. 52401, 2017.
    [16] X. Li et al., “Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB| MgO interface,” Appl. Phys. Lett., vol. 110, no. 5, p. 52401, 2017.
    [17] I. M. Miron et al., “Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection,” Nature, vol. 476, no. 7359, pp. 189–193, 2011.
    [18] I. M. Miron et al., “Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection,” Nature, vol. 476, no. 7359, pp. 189–193, 2011.
    [19] I. M. Miron et al., “Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection,” Nature, vol. 476, no. 7359, pp. 189–193, 2011.
    [20] I. M. Miron et al., “Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection,” Nature, vol. 476, no. 7359, pp. 189–193, 2011.
    [21] G. Shirane et al., “Two-dimensional antiferromagnetic quantum spin-fluid state in La 2 CuO 4,” Phys. Rev. Lett., vol. 59, no. 14, p. 1613, 1987.
    [22] F. Lado and E. Lomba, “Heisenberg spin fluid in an external magnetic field,” Phys. Rev. Lett., vol. 80, no. 16, p. 3535, 1998. G. Shirane et al., “Two-dimensional antiferromagnetic quantum spin-fluid state in La 2 CuO 4,” Phys. Rev. Lett., vol. 59, no. 14, p. 1613, 1987.
    [23] D. Sherrington and S. Kirkpatrick, “Solvable model of a spin-glass,” Phys. Rev. Lett., vol. 35, no. 26, p. 1792, 1975. G. Shirane et al., “Two-dimensional antiferromagnetic quantum spin-fluid state in La 2 CuO 4,” Phys. Rev. Lett., vol. 59, no. 14, p. 1613, 1987.
    [24] M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hickey, and R. L. Stamps, “Exchange bias using a spin glass,” Nat. Mater., vol. 6, no. 1, pp. 70–75, 2007. G. Shirane et al., “Two-dimensional antiferromagnetic quantum spin-fluid state in La 2 CuO 4,” Phys. Rev. Lett., vol. 59, no. 14, p. 1613, 1987.
    [25] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, “Theory of quantum annealing of an Ising spin glass,” Science (80)., vol. 295, no. 5564, pp. 2427–2430, 2002. G. Shirane et al., “Two-dimensional antiferromagnetic quantum spin-fluid state in La 2 CuO 4,” Phys. Rev. Lett., vol. 59, no. 14, p. 1613, 1987.
    [26] S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science (80-. )., vol. 320, no. 5873, pp. 190–194, 2008.
    [27] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science (80-. )., vol. 309, no. 5741, pp. 1688–1692, 2005.
    [28] G. Bochi et al., “Magnetic domain structure in ultrathin films,” Phys. Rev. Lett., vol. 75, no. 9, p. 1839, 1995.
    [29] I. Dzyaloshinsky, “A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics,” J. Phys. Chem. Solids, vol. 4, no. 4, pp. 241–255, 1958.
    [30] T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev., vol. 120, no. 1, p. 91, 1960.
    [31] A. Fert and P. M. Levy, “Role of anisotropic exchange interactions in determining the properties of spin-glasses,” Phys. Rev. Lett., vol. 44, no. 23, p. 1538, 1980.
    [32] D. D. Stancil and A. Prabhakar, “Spin Waves: Theory and Applications’, Springer,” New York, 2009.
    [33] A. Spinelli, B. Bryant, F. Delgado, J. Fernández-Rossier, and A. F. Otte, “Imaging of spin waves in atomically designed nanomagnets,” Nat. Mater., vol. 13, no. 8, pp. 782–785, 2014.
    [34] T. Kampfrath et al., “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics, vol. 5, no. 1, pp. 31–34, 2011.
    [35] K. Uchida et al., “Observation of the spin Seebeck effect,” Nature, vol. 455, no. 7214, pp. 778–781, 2008.
    [36] K. Uchida et al., “Spin seebeck insulator,” Nat. Mater., vol. 9, no. 11, pp. 894–897,2010.
    [37] H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, “Theory of the spin Seebeck effect,” Reports Prog. Phys., vol. 76, no. 3, p. 36501, 2013.
    [38] Dörr, K., & Herklotz, A. (2014). Two steps for a magnetoelectric switch. Nature, 516(7531), 337–338. doi:10.1038/516337a

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE