簡易檢索 / 詳目顯示

研究生: 黄宣瀚
Huang, Hsuan-Han
論文名稱: 生成式人工智慧工具應用之科技接受研究
An Empirical Study of Technology Acceptance Utilizing Generative Artificial Intelligence Tools
指導教授: 蔡欣怡
Tsai, Sandy Hsin-Yi
學位類別: 碩士
Master
系所名稱: 管理學院 - 電信管理研究所
Institute of Telecommunications Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 97
中文關鍵詞: 科技接受模型任務科技適配模式生成式人工智慧聊天機器人
外文關鍵詞: Technology Acceptance Model, Task-Technology Fit Model, Generative AI, Chat-Bot
相關次數: 點閱:96下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨2022年11月OpenAI對市場開放以大型語言模型(LLM)為核心技術生成式人工智慧服務ChatGPT之後,人工智慧重新成為當今熱門議題,ChatGPT與其他生成式人工智慧服務之使用者群體也隨技術的日益成熟而日漸擴張。生成式人工智慧工具被應用的情境也已深入包括高等教學場域與商業營運流程之中,同時應用在不同專業領域上皆已有實例,其包括醫療、生物科學、教育、法律、財經……等等,且亦有產業領頭企業導入生成式人工智慧以最大化提高企業組織中的個人的工作效率,同時企圖透過生成式人工智慧達成人機協作與組織的數位轉型。
    本研究透過問卷調查方式,應用結構方程模型(SEM)進行資料分析,從個人使用層面進行當今生成式人工智慧使用樣態探討。利用科技接受模型為研究架構主體,並且採用任務科技適配模型中的任務科技適配變項做為替換原始科技接受模型的外部變數變項,另外也將信任做為替換原始科技接受模型中的使用態度變項,以此作為研究架構來進行結構方程模型分析以預測使用者對於生成式人工智慧工具的使用行為意向。
    本研究結果揭示,任務科技適配對感知易用性與感知有用性產生正向影響,並證實感知有用性為生成式人工智慧工具使用的最重要預測變數。然而,本研究亦發現信任對於生成式人工智慧的使用行為意向並未顯示出統計上的顯著關聯性。研究結果可供未來生成式人工智慧開發團隊在服務設計與模型參數調整上參考,同時也可作為需要深入瞭解生成式人工智慧相關資訊以制定教育、行政、商務、法規等領域政策規劃的依據。

    Following the market release of OpenAI's generative artificial intelligence (AI) service, ChatGPT, in November 2022, AI has once again become a prominent topic of interest. The user base for ChatGPT and other generative AI services has expanded alongside the maturation of the technology. These generative AI tools are being increasingly integrated into various contexts, including higher education and business operations, with applications spanning diverse professional fields such as healthcare, biosciences, education, law, and finance. Leading enterprises are also adopting generative AI to maximize individual efficiency within organizational settings, aiming to achieve human-machine collaboration and digital transformation.
    This study employs a questionnaire survey and utilizes structural equation modeling (SEM) to analyze data on the current usage patterns of generative AI from an individual user's perspective. The research framework is based on the Technology Acceptance Model (TAM), incorporating the Task-Technology Fit (TTF) model's variables as substitutes for the original TAM external variables. Additionally, trust is used as a replacement for the attitude variable in TAM. This framework is employed to conduct SEM analysis and predict users' behavioral intentions regarding the use of generative AI tools.
    The findings reveal that task-technology fit positively influences perceived ease of use and perceived usefulness, with the latter being identified as the most significant predictor of generative AI tool usage. However, trust does not show a statistically significant correlation with usage behavior intentions. These results provide valuable insights for future generative AI development teams in service design and model parameter adjustments and can serve as a reference for policymakers in education, administration, business, and regulatory fields seeking to understand and formulate policies related to generative AI.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第二章 文獻回顧 5 第一節 生成式人工智慧發展概況 5 第二節 人工智慧領域的科技接受研究與相關理論 14 第三節 研究架構設計 24 第三章 研究方法 28 第一節 問卷調查法 28 第二節 訪談法 30 第三節 變項測量 31 第四節 資料分析方法 34 第五節 前測結果 36 第四章 研究結果 37 第一節 樣本特性分析 37 第二節 研究變項敘述性統計分析 44 第三節 信度分析 46 第四節 結構方程模型-驗證型因素分析 47 第五節 結構方程模型-結構模型分析 49 第五章 結論與討論 62 第一節 研究結論 62 第二節 管理實務與建議 68 第三節 研究限制與未來研究方向 69 參考文獻 71 附錄一 問卷調查之問卷82

    永豐金證券豐雲學堂 (2024, June 6). 2024年AI伺服器概念股還值得投資嗎?台灣AI供應鏈有哪些公司?3圖表帶你一次看懂!.永豐金證券豐雲學堂https://www.sinotrade.com.tw/richclub/hotstock/2024%E5%B9%B4AI%E4%BC%BA%E6%9C%8D%E5%99%A8%E6%A6%82%E5%BF%B5%E8%82%A1%E9%82%84%E5%80%BC%E5%BE%97%E6%8A%95%E8%B3%87%E5%97%8E-%E5%8F%B0%E7%81%A3AI%E4%BE%9B%E6%87%89%E9%8F%88%E6%9C%89%E5%93%AA%E4%BA%9B%E5%85%AC%E5%8F%B8-3%E5%9C%96%E8%A1%A8%E5%B8%B6%E4%BD%A0%E4%B8%80%E6%AC%A1%E7%9C%8B%E6%87%82--65af4cb1880d9e29902a677f
    百度. (2023). 文心一言官網. https://yiyan.baidu.com/welcome
    阿里巴巴. (2023). 通義千問官網. https://tongyi.aliyun.com/
    財團法人台灣網路資訊中心. (2023, August 29). 2023年台灣網路報告. https://report.twnic.tw/2023/
    陳子榕. (2023, June 2). AI將為台股創造下一個股王?會是誰.萬寶週刊. https://money.udn.com/money/story/5607/7208554
    Adler, M. (2023, August 17). Energy announces $16M for AI nuclear physics research. Fedscoop. https://fedscoop.com/energy-announces-16m-for-ai-nuclear-physics-research/?utm_source=brief.beehiiv.com&utm_medium=newsletter&utm_campaign=brief-ai-1-1
    AIGC年會2023 (2023, May 6). 2023 AIGC詠唱者年會官網. https://gaiconf.com/
    AIGC年會2024 (2024, May 25) 定義未來.2024 生成式 AI 年會官方網站https://2024.gaiconf.com/zh
    Arbuckle, J. L. (2019). Amos (Version 26.0) [Computer Program]. Chicago: IBM SPSS.
    Avsec, Z. and Cheng, J. (2023, September 19). A catalogue of genetic mutations to help pinpoint the cause of diseases, Google DeepMind. https://deepmind.google/discover/blog/a-catalogue-of-genetic-mutations-to-help-pinpoint-the-cause-of-diseases/
    Bhandari, P. (2023, June 22). Questionnaire Design | Methods, question types & examples. Scribbr. https://www.scribbr.com/methodology/questionnaire/
    Canva. (2023). Magic Studio. https://www.canva.com/magic/?utm_source=ai.briefnewsletter.com&utm_medium=newsletter&utm_campaign=vs
    Chui, M., Yee, L., Hall, B., & Singla, A. (2023). The state of AI in 2023: Generative AI’s breakout year. Mckinsey.com. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year#/
    DoorDash (2023, August 28.) DoorDash Introduces AI and Agent-Powered Voice Ordering Solution. https://about.doordash.com/en-us/news/introducing-ai-and-agent-powered-voice-ordering
    Edelman (2024, March 6). Edelman Trust Barometer with Key Insights Around AI. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.edelman.com/sites/g/files/aatuss191/files/2024-03/2024%20Edelman%20Trust%20Barometer%20Key%20Insights%20Around%20AI.pdf?utm_source=www.therundown.ai&utm_medium=referral&utm_campaign=u-s-tests-chatgpt-for-military-strategy
    Everypixel. (2023, August 15). AI Has Already Created as Many Images as Photographers Have Taken in 150 Years. Statistics for 2023. https://journal.everypixel.com/ai-image-statistics?utm_source=brief.beehiiv.com&utm_medium=newsletter&utm_campaign=brief-ai
    Fox, A. (2023, August 26). Artificial intelligence used to train staff in ‘UK first for social care sector’. Independent. https://www.independent.co.uk/news/uk/home-news/nhs-uk-ai-trainer-social-care-b2399744.html?utm_source=brief.beehiiv.com&utm_medium=newsletter&utm_campaign=ai
    Freeman, J. (2024, February 1). New HEPI Policy Note finds more than half of students have used generative AI for help on assessments – but only 5% likely to be using AI to cheat. HEPI. https://www.hepi.ac.uk/2024/02/01/new-hepi-policy-note-finds-more-than-half-of-students-have-used-generative-ai-for-help-on-assessments-but-only-5-likely-to-be-using-ai-to-cheat/?utm_source=ai.briefnewsletter.com&utm_medium=newsletter&utm_campaign=google-bard
    Glover. G (2023, August 12.). From Elon Musk to Chinese tech titans, everyone wants Nvidia’s GPU chips. There might not be enough to go around. Business Insider. https://www.businessinsider.com/elon-musk-tesla-twitter-china-tech-giants-nvidia-gpu-chips-2023-8?utm_source=brief.beehiiv.com&utm_medium=newsletter&utm_campaign=brief-ai
    Google Bard. (2023, September 19). https://www.youtube.com/watch?v=lr87yrvK86w
    Gupta, A., and O’Malley, L. (2023, October 10). HLTH '23: Google Cloud and healthcare leaders share how generative AI is transforming the industry. Google Cloud. https://cloud.google.com/blog/topics/healthcare-life-sciences/google-cloud-talks-generative-ai-at-hlth-23?utm_source=ai.briefnewsletter.com&utm_medium=newsletter&utm_campaign=ai
    Hassan, M. (2023, November 2). Reliability – Types, Examples and Guide. Research Method. https://researchmethod.net/reliability/
    Hassan, M. (2023, November 4). Validity – Types, Examples and Guide. Research Method. https://researchmethod.net/validity/
    Hu, K. (2023, July 18). McKinsey partners with startup Cohere to help clients adopt generative AI. Reuters. https://www.reuters.com/technology/mckinsey-partners-with-startup-cohere-help-clients-adopt-generative-ai-2023-07-18/
    IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.Kastrenakes, J. and Vincent, J. (2023, July 26). Hope, fear, and AI. The Verge. https://www.theverge.com/c/23753704/ai-chatgpt-data-survey-research
    lmsys.org [@lmsysorg]. (2024, Jan 27). Breaking News from Arena [X.com]. https://x.com/lmsysorg/status/1750921228012122526
    McClain, C. (2024, March 26). Americans’ use of ChatGPT is ticking up, but few trust its election information, Pew Research Center. https://pewrsr.ch/3VyXbJR
    McKinsey & Company. (2023, August 16). Meet Lilli, our generative AI tool that’s a researcher, a time saver, and an inspiration. Mckinsey.com. https://www.mckinsey.com/about-us/new-at-mckinsey-blog/meet-lilli-our-generative-ai-tool
    Meta. (2023). Introducing Llama 2. https://ai.meta.com/llama/
    Microsoft Azure. (2023). OpenAI Service. https://learn.microsoft.com/zh-tw/azure/ai-services/openai/overview
    Microsoft. (2023). Bing Chat. Microsoft.com. https://www.microsoft.com/en-us/edge/features/bing-chat?form=MT00D8
    Middleton, F. (2023, August 8). The 4 Types of Reliability in Research | Definitions & Examples. Scribbr. https://www.scribbr.com/methodology/types-of-reliability/
    Middleton, F. (2023, August 8). Reliability vs. Validity in Research | Difference, Types and Examples. Scribbr. https://www.scribbr.com/methodology/reliability-vs-validity/
    MixerBox. (2024, April 24). 台製聊天機器人 MixerBox AI 用戶破百萬!首份台灣 AI 用戶報告出爐揭秘使用數據. https://reurl.cc/kOZp9K
    Morgan Stanley. (2023, March 14). Morgan Stanley Wealth Management Announces Key Milestone in Innovation Journey with OpenAI. https://www.morganstanley.com/press-releases/key-milestone-in-innovation-journey-with-openai
    Mollick, E. and Mollick, L. (2023, September 25). Student Use Cases for AI-An Inspiring Minds Series. Harvard Business Publishing. https://hbsp.harvard.edu/inspiring-minds/student-use-cases-for-ai?utm_source=ai.briefnewsletter.com&utm_medium=newsletter&utm_campaign=openai-900
    Nippon.com. (2023, September 5.). Japan’s Prefectural Governments Adopting or Trialing ChatGPT for Work Purposes. https://www.nippon.com/en/japan-data/h01773/?utm_source=ai.briefnewsletter.com&utm_medium=newsletter&utm_campaign=openai
    OpenAI. (2022, November 30). ChatGPT Announcement. OpenAI. https://openai.com/blog/chatgpt
    OpenAI. (2023). GPT-4 is OpenAI’s most advanced system, producing safer and more useful responses. https://openai.com/gpt-4
    OpenAI. (2023, August 28). Introducing ChatGPT Enterprise. OpenAI. https://openai.com/blog/introducing-chatgpt-enterprise?utm_source=brief.beehiiv.com&utm_medium=newsletter&utm_campaign=elon-ai
    OpenAI. (2024, March 29). Navigating the Challenges and Opportunities of Synthetic Voices. OpenAI. https://openai.com/index/navigating-the-challenges-and-opportunities-of-synthetic-voices
    OpenAI. (2024, May 13). Hello GPT-4o. OpenAI. https://openai.com/index/hello-gpt-4o/
    Pappu, A. (2023, August 30). Now Available: Duet AI for Google Workspace. Google Workspace. https://workspace.google.com/blog/product-announcements/duet-ai-in-workspace-now-available?utm_source=ai.briefnewsletter.com&utm_medium=newsletter&utm_campaign=google-ai
    Park, E., and Gelles-Watnick, R. (2023, August 28). Most Americans haven’t used ChatGPT; few think it will have a major impact on their job. Pew Research Center. https://www.pewresearch.org/short-reads/2023/08/28/most-americans-havent-used-chatgpt-few-think-it-will-have-a-major-impact-on-their-job/?utm_source=brief.beehiiv.com&utm_medium=newsletter&utm_campaign=doordash-ai
    Sidoti, O., and Vogels, E. (2023, August 17). What Americans know about AI, Cybersecurity and Big Tech. Pew Research Center. https://www.pewresearch.org/internet/2023/08/17/what-americans-know-about-ai-cybersecurity-and-big-tech/pi_2023-08-17_digital-knowledge_0-01a/
    Singla, A., Sukharevsky, A., Yee., L., Chiu, M., Hall., B. (2024, May 30). The state of AI in early 2024: Gen AI adoption spikes and starts to generate value. Mckinsey.com https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
    Radford, A., and Kleiman, Z. (2023, September 27). ChatGPT can now access up to date information. BBC. https://www.bbc.com/news/technology-66940771
    Abukmeil, M., Ferrari, S., Genovese, A., Piuri, V., & Scotti, F. (2021). A survey of unsupervised generative models for exploratory data analysis and representation learning. ACM Computing Surveys, 54(5), 1–40. https://doi.org/10.1145/3450963
    Agrawal, A. K., Gans, J. S., & Goldfarb, A. (2021). AI adoption and system-wide change. National Bureau of Economic Research. https://doi.org/10.3386/w29293
    Akbari, M., Rezvani, A., Shahriari, E., Zúñiga, M. A., & Pouladian, H. (2020). Acceptance of 5G technology: Mediation role of Trust and Concentration. Journal of Engineering and Technology Management, 57, 101585.
    Alagarsamy, S., & Mehrolia, S. (2023). Exploring chatbot trust: Antecedents and behavioral outcomes. Heliyon, 9(5). Aljanabi, M. (2023). ChatGPT: Future directions and open possibilities. Mesopotamian journal of Cybersecurity, 2023, 16-17.
    Anderson, N., Belavy, D.L., Perle, S.M., Hendricks, S., Hespanhol, L., Verhagen, E., Memon, A.R. (2023). AI did not write this manuscript, or did it? Can we trick the AI text detector into generated texts? The potential future of ChatGPT and AI in sports & exercise medicine manuscript generation [Letter to the editor]. BMJ Open Sport & Exercise Medicine, 9(1), e001568. https://doi.org/10.1136/bmjsem-2022-001568
    Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., … & Fung, P. (2023). A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023.
    Butt, S., Mahmood, A., Saleem, S., Rashid, T., & Ikram, A. (2021). Students’ performance in online learning environment: The role of task technology fit and actual usage of system during COVID-19. Frontiers in psychology, 12, 759227. Burgess, G. L., & Worthington, A. K. (2021). Technology acceptance model. Persuasion theory in action: An open educational resource. Pressbooks. https://ua. pressbooks. pub/persuasiontheoryinaction/chapter/technology-acceptance-model. Bresnahan, T. (2019). Artificial intelligence technologies and aggregate growth prospects. Prospects for economic growth in the United States, 132-172.
    Bresnahan, T. F., Brynjolfsson, E., and Hitt, L. M. (2002). Information technology, workplace organization, and the demand for skilled labor: Firm-level evidence. The quarterly journal of economics, 117(1), 339–376.
    Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., … & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
    Cabrera-Sánchez, J. P., Villarejo-Ramos, Á. F., Liébana-Cabanillas, F., Shaikh. (2021). Identifying relevant segments of AI applications adopters – Expanding the UTAUT2’s variables. Telematics and Informatics, 58, 101529.
    Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. (2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.
    Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
    Dharanikota, S., Marakas, G. (2021). Does AI Reliance lead to Performance? A Task-Technology Fit Theory Perspective, AMCIS 2021 Proceedings.
    Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M., & Weston, J. (2018). Wizard of Wikipedia: Knowledge-powered conversational agents. arXiv preprint arXiv:1811. 01241.
    Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information & management, 36(1), 9-21.
    Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS quarterly, 453-461. Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130. Fleckenstein, J., Meyer, J., Jansen, T., Keller, S. D., Köller, O., & Möller, J. (2024). Do teachers spot AI? Evaluating the detectability of AI-generated texts among student essays. Computers and Education: Artificial Intelligence, 6, 100209.
    Goodhue, D. L., & Thompson, R. L. (1995). Task-Technology Fit and Individual Performance. MIS Quarterly, 19(2), 213–236. https://doi.org/10.2307/249689
    Gujik, E., Byrge, C., and Gilde, C. (2023). The originality of machines: AI takes the Torrance Test. Journal of Creativity, Volume 33(3), December 2023, 100065. https://www.sciencedirect.com/science/article/pii/S2713374523000249
    Gupta, U. (2023). GPT-Invest AR: Enhancing Stock Investment Strategies through Annual
    Report Analysis with Large Language Models. Github Repository. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4568964 Haase, J., & Hanel, P. H. (2023). Artificial muses: Generative artificial intelligence chatbots have risen to human-level creativity. Journal of Creativity, 33(3), 100066.
    Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., Ray, S., ... & Ray, S. (2021). An introduction to structural equation modeling. Partial least squares structural equation modeling (PLS-SEM) using R: a workbook, 1-29.
    Hasjia, A., Esper, T. (2022). In artificial intelligence (AI) we trust: A qualitative investigation of AI technology acceptance. Journal of Business Logistics, Volume43(3), 388-412. Henkel, O., Horne-Robinson, H., Kozhakhmetova, N., & Lee, A. (2024). Effective and Scalable Math Support: Evidence on the Impact of an AI-Tutor on Math Achievement in Ghana. arXiv preprint arXiv:2402.09809.
    Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
    Liu, J., Song, D., & Li, W. (2021). Research on Factors Influencing Smart Library Users’ Use Intention in the Era of Artificial Intelligence. Journal of Physics: Conference Series, 2025(1), 012089. https://doi.org/10.1088/17426596/2025/1/012089
    McLean, G., Osei-Frimpong, K., & Barhorst, J. (2021). Alexa, do voice assistants influence consumer brand engagement? – Examining the role of AI powered voice assistants in influencing consumer brand engagement. Journal of Business Research, 124, 312–328. https://doi.org/10.1016/j.jbusres.2020.11.045
    Mostafa, R. B., & Kasamani, T. (2022). Antecedents and consequences of chatbot initial trust. European journal of marketing, 56(6), 1748-1771.
    Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., … & Fung, P. (2023). Survey of hallucination in natural language generation. ACM Computing Surveys, 55(12), 1-38.
    Lee, B. K., Mayhew, E. J., Sanchez-Lengeling, B., Wei, J. N., Qian, W. W., Little, K. A., ... & Wiltschko, A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception. Science, 381(6661), 999-1006. Li, K. (2023). Determinants of college students’ actual use of AI-based systems: An extension of the technology acceptance model. Sustainability, 15(6), 5221.
    Li, W., Hu, Y., Zhou, Y., & Pham, D. T. (2023). Safe human–robot collaboration for industrial settings: a survey. Journal of Intelligent Manufacturing, 1-27.
    Lim, J. S., Zhang, J. (2022). Adoption of AI-driven personalization in digital news platforms: An integrative model of technology acceptance and perceived contingency. Technology in Society, Volume 69, May 2022, 101965.
    Liu, X., He, X., Wang, M., Shen, H. (2022). What influences patients’ continuance intention to use AI-powered service robots at hospitals? The role of individual characteristics. Technology in Society, Volume 70, August 2022, 101996.
    Kuen, L., Westmattelmann, D., Bruckes, M., & Schewe, G. (2023). Who earns trust in online environments? A meta-analysis of trust in technology and trust in provider for technology acceptance. Electronic Markets, 33(1), 61.
    Macdonald, C., Adeloye, D., Sheikh, A., & Rudan, I. (2023). Can ChatGPT draft a research article? An example of population-level vaccine effectiveness analysis [Article]. Journal of Global Health, 13(1), 1–8. https://doi.org/10.7189/jogh.13.010801
    Maedche, A., Legner, C., Benlian, A., Berger, B., Gimpel, H., Hess, T., Hinz, O., Morana, S., & Söllner, M. (2019). AIBased Digital Assistants. Business & Information Systems Engineering, 61(4), 535–544. http://dx.doi.org/10.1007/s12599-019-00600-8 Mann, D. L. (2023). Artificial intelligence discusses the role of artificial intelligence in translational medicine: a JACC: basic to translational science interview with ChatGPT. Basic to Translational Science, 8(2), 221-223.
    Marangunić, N., Granić, A. Technology acceptance model: a literature review from 1986 to 2013. Univ Access Inf Soc 14, 81–95 (2015). https://doi.org/10.1007/s10209-014-0348-1
    Mohr, S., Kühl, R. (2021). Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22, pages1816–1844 (2021).
    Na, S., Heo, S., Han, S., Shin, Y., Roh, Y. (2022). Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology–Organization–Environment (TOE) Framework. MDPI Buildings, 12(2), 90.
    Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International journal of electronic commerce, 7(3), 101-134.
    Parthiban, E. S., & Adil, M. (2023). Examining the Adoption of AI based Banking Chatbots: A Task Technology Fit and Network Externalities Perspective. Asia Pacific Journal of Information Systems, 33(3), 652-676. Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of ai on developer productivity: Evidence from github copilot. arXiv preprint arXiv:2302.06590.
    Pillai, R., & Sivathanu, B. (2020b). Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking: An International Journal, 27(9), 2599–2629. https://doi.org/10.1108/BIJ-04-20200186
    Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury, J., Heek, J., … & Dean, J. (2023). Efficiently scaling transformer inference. Proceedings of Machine Learning and Systems, 5.
    Al-Maatouk, Q., Othman, M. S., Aldraiweesh, A., Alturki, U., Al-Rahmi, W. M., & Aljeraiwi, A. A. (2020). Task-technology fit and technology acceptance model application to structure and evaluate the adoption of social media in academia. Ieee Access, 8, 78427-78440. Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In An integrated approach to communication theory and research (pp. 432-448). Routledge. Rao, A., Pang, M., Kim, J., Kamineni, M., Lie, W., Prasad, A. K., ... & Succi, M. D. (2023). Assessing the utility of ChatGPT throughout the entire clinical workflow: development and usability study. Journal of Medical Internet Research, 25, e48659. Semeraro, F., Griffiths, A., & Cangelosi, A. (2023). Human–robot collaboration and machine learning: A systematic review of recent research. Robotics and Computer-Integrated Manufacturing, 79, 102432.
    Shrestha, Ajay & Vassileva, Julita & Joshi, Sandhya & Just, Jennifer. (2021). Augmenting the technology acceptance model with trust model for the initial adoption of a blockchain-based system. PeerJ Computer Science. 7. e502. 10.7717/peerj-cs.502.
    Su, R., John, J.R & Lin, P. (2023). Machine learning-based prediction for self-harm and suicide attempts in adolescents. Psychiatry Research, Volume 328, October 2023, 115446. Taecharungroj, V. (2023). “What can ChatGPT do?” Analyzing early reactions to the innovative AI chatbot on Twitter. Big Data and Cognitive Computing, 7(1), 35.
    Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision sciences, 27(3), 451-481.
    Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.
    Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in human behavior, 67, 221-232.
    Wu, K., Zhao, Y., Zhu, Q., Tan, X., & Zheng, H. (2011). A meta-analysis of the impact of trust on technology acceptance model: Investigation of moderating influence of subject and context type. International Journal of Information Management, 31(6), 572-581. Zhang, M., Press, O., Merrill, W., Liu, A., & Smith, N. A. (2023). How language model hallucinations can snowball. arXiv preprint arXiv:2305.13534. Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., ... & Wen, J. R. (2023). A survey of large language models. arXiv preprint arXiv:2303.18223.
    Zhao, Y. G., El-Gayar, O., & Tu, Z. (2023). Is artificial intelligence attractive? An empirical study on user’s intention to use AI-enabled applications.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE