簡易檢索 / 詳目顯示

研究生: 吳進文
Wu, Chin-Wen
論文名稱: 階層式估算法於物體追蹤與影像壓縮之應用
Hierarchical Estimation for Object Tracking and Error Concealment
指導教授: 詹寶珠
Chung, Pau-Choo
共同指導教授: 鍾翼能
Chung, Yi-Nung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 69
中文關鍵詞: 階層式估算小波轉換錯誤隱藏物體追蹤資料融合卡門濾波器
外文關鍵詞: Hierarchical estimation, DWT, Error concealment, Object tracking, Data fusion, Kalman filter
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要提出了階層式估算方法於影像處理上應用,在單張影像方面主要應用於影像壓縮傳輸系統,透過階層式錯誤恢復(error concealment),達到更好錯誤容忍能力。在多張影像應用方面,從multi-view camera視訊影像中,進行階層式資料融合(data fusion)並進行物體追蹤。
    針對階層式估算應用於JPEG2000影像壓縮,提出應用方法為Hierarchical Uneven Block-sized Information Included Marker,簡稱為(HUBIIM)。 可應用於JPEG2000壓縮後資料流(bitstream)傳輸錯誤時作為錯誤恢復之用。在這方法中,我們在每一個區塊(code-block)之後緊接著插入了一個附加資訊的標記(marker),作為保護資料流之用。此標記不但具同步標記的功能,並且附加了VS索引和TR索引兩個資訊;其中VS索引是從其對應區塊的鄰近區塊中找到一個和其最為接近的區塊,而TR索引是由其區塊相對位置處之高一階層(level)中找到一個pattern相近的參考區塊。當發生錯誤時,再利用這兩個索引找出另一個區塊來代替錯誤的區塊,以達到有效的錯誤恢復(Error recovery)。最後顯示實驗結果比JPEG2000之錯誤容錯方法及其它階層式方法效果好。
    階層式估算於多張影像方面,提出一個稱為closed-loop local-global integrated hierarchical estimator (CLGIHE)方法來進行多攝影機物體追蹤。這個階層式架構共分為local 及 global 兩層且各別獨立運作,其中local層所做的工作包括去除背景、物體偵測、量測值(measurement)之決定、估計物體下一步移動位置等。之後所有local層的資訊傳至global層進行整合式的資料融合,以更精確的判斷出物體的位置。所提出的方法與其他階層式資料融合進行比較,得到更佳的實驗結果。

    A closed-loop local-global integrated hierarchical estimator (CLGIHE) approach for object tracking using multiple cameras is proposed. The Kalman filter is used in both the local and global estimates. In contrast to existing approaches where the local and global estimations are performed independently, the proposed approach combines local and global estimates into one for mutual compensation. Consequently, the Kalman-filter-based data fusion optimally adjusts the fusion gain based on environment conditions derived from each local estimator. The global estimation outputs are included in the local estimation process. Closed-loop mutual compensation between the local and global estimations is thus achieved to obtain higher tracking accuracy. A set of image sequences from multiple views are applied to evaluate performance. Computer simulation and experimental results indicate that the proposed approach successfully tracks objects.
    This dissertation also proposes the hierarchical uneven block-sized information included marker (HUBIIM) for JPEG 2000 to achieve both error resilience and error concealment capability. Included in the HUBIIM approach is the marker adopted in JPEG 2000 devised to incorporate both error detection and correction capabilities. The HUBIIM consists of VS Index and TR Index. VS Index is used to indicate a value support block, a block which neighbors an erroneous block and whose pixel values are most similar to those of the erroneous block. TR Index is used to indicate a texture reference block, the block in the corresponding position of the erroneous block in the same subband of one-higher level of which the pixel value distribution is similar as the erroneous block. Thus, HUBIIM protects other code blocks when a code block is affected by errors, and provides error concealment via VS Index and TR Index. When errors occur, a new block is formed to replace the erroneous block using the value support block and the texture reference block to achieve error concealment. The sizes of the blocks in HUBIIM are determined based on the importance factor of various levels of subbands; that is, different levels have different block sizes. The proposed approach greatly reduces the overhead caused by the addition of markers between every two blocks and significantly improved error resilience capability.

    摘 要 IV Abstract VI Acknowledgements VIII List of Tables X List of Figures XI Chapter 1. Introduction 1 1.1. Scope of the Work 1 1.2. A Hierarchical Estimator for Object Tracking 1 1.3. Hierarchical Estimation for Error Concealment in JPEG2000 4 Chapter 2. Related Work 7 Chapter 3. A Hierarchical Estimator for Object Tracking 11 3.1. System Overview 11 3.2. Proposed Hierarchical Estimator for Object Tracking 13 3.3. Experimental Results 22 Chapter 4. Hierarchical Estimation for Error Concealment in JPEG2000 33 4.1. JPEG 2000 Error Concealment Tools 33 4.2. Proposed Error Concealment Method 36 4.3. Experimental Results 40 Chapter 5. Case Study -Assistance Instruments Detection and Tracking 47 5.1 Walking Frame Detection in a Healthcare Center 49 5.2 Wheelchair Detection and Tracking 53 5.3 Participant Analysis with Detected Wheelchair 54 5.4 Experimental Results 57 Chapter 6. Conclusions 61 REFERENCES 63

    [1] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based Object Tracking”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, no. 5, pp.564-577, May 2003.
    [2] D. Comaniciu, V. Ramesh, and P. Meer, “Real-Time Tracking of Non-Rigid Objects Using Mean Shift”, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head, SC, Vol. 2, pp. 142–149, June 2000.
    [3] M. S. Gerwal and A. P. Andrews, Kalman Filtering Theory and Practice. Prentice Hall, Englewood Cliffs, New Jersey 1993.
    [4] J. Cui, H. Zha, H. Zhao, and R. Shibasaki, “Laser-based Detection and Tracking of Multiple People in Crowds”, Computer Vision and Image Understanding (CVIU) , Vol. 106, Issues 2-3, pp 300-312, May-June 2007.
    [5] J. Czyz, B. Ristic, and B. Macq, “A Particle Filter for Joint Detection and Tracking of Color Objects”, Image and Vision Computing, No. 8, pp.1271-1281, Aug. 2007.
    [6] C. Hue, J. Cadre, and P. Perez, “Sequential Monte Carlo Filter for Multiple Target Tracking and Data Fusion”, IEEE Trans. Signal Processing, Vol. 50, no. 2, pp. 309-325, 2002.
    [7] C. Chang, R. Ansari, “Kernel Particle Filter: Iterative Sampling for Efficient Visual Tracking”, International Conference on Image Processing, Vol. 2, pp. 977-980, 2003.
    [8] N. Bouaynaya, W. Qu and D. Schonfeld, “An Online Motion-Based Particle Filter for Head Tracking Applications“, IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp. 225 - 228, 2005.
    [9] C. Shan, Y. Wei, T. Tan, and F. Ojardias, “Real Time Hand Tracking by Combining Particle Filtering and Mean Shift”, Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, p. 669–674, 2004.
    [10] H. Y. Cheng and J. N. Hwang, “Adaptive Particle Sampling and Adaptive Appearance for Multiple Video Object Tracking”, Signal Processing, Vol. 89, no. 9, pp. 1844-1849, Sep. 2009.
    [11] Y. B. Shalom and T. E. Fortmann, Tracking and Data Association, Academic Press, 1988.
    [12] D.J. Kershaw and R. J. Evans, “Waveform Selective Probabilistic Data Association”, IEEE Trans. Aerosp. Electron. Syst. Vol .AES-33, pp. 1180-1189, 1997.
    [13] J. W. Yi and J. H. Ho, “Recursive Resolving Algorithm for Multiple Stereo and Motion Matches”, Image and Vision Computing, Vol. 15, pp. 181-196, 1997.
    [14] Y. Li, A. Hilton, and J. Illingworth, “A Relaxation Algorithm for Real-time Multiple View 3D-tracking”, Image and Vision Computing, Vol. 20 no. 12, pp. 841-859, Oct. 2002.
    [15] W. M. Hu, X. Zhou, M. Hu, and S. J. Maybank, “Occlusion Reasoning for Tracking Multiple People”, IEEE Trans. Pattern Anal. Mach. Intell. Vol. 19, no. 1, pp. 114-121, Jan. 2009.
    [16] S. Khan and M. Shan, “Consistent Labeling of Tracking Objects in Multiple Cameras with Overlapping Fields of View”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, no. 10, pp. 1355–1360, 2003.
    [17] J. Black and T. Ellis, “Multi Camera Image Tracking”, Image and Vision Computing, Vol. 24, no. 11, pp. 1256-1267, Nov. 2006.
    [18] A. O. Ercan, A. E. Gamal, and L. J. Guibas, “Object Tracking in the Presence of Occlusions via a Camera Network”, Proceedings of the 6th international conference on Information processing in sensor networks (IPSN' 07), pp. 509-518, 2007.
    [19] A. Senior, A. Hampapur, Y. L. Tian, L. Brown, S. Pankanti and R. Bolle, “Appearance Models for Occlusion Handling”, Image and Vision Computing, Vol. 24, no. 11, pp. 1233-1243, Nov. 2006.
    [20] S. L. Dockstader and A. M. Tekalp, “Multiple Camera Fusion for Multi-object Tracking”, IEEE Workshop on Multi-Object Tracking, pp. 95-102, July 2001.
    [21] Q. M. Zhou and J. K. Aggarwal , “Object Tracking in an Outdoor Environment using Fusion of Features and Cameras”, Image and Vision Computing, Vol. 24 no. 11, Nov., pp.1244-1255, 2006.
    [22] M. Majji, J. J. Davis, and J. L. Junkins, "Hierarchical Multi-rate Measurement Fusion for Estimation of Dynamical Systems", AIAA Guidance, Navigation and Control Conference and Exhibit, 2007.
    [23] J. Ajgl, M. Simandl, and J. Dunık, "Millman’s Formula in Data Fusion", Proceedings of the 10th International PhD Workshop on Systems and Control. Prague :Institute of Information Theory and Automation, 2009.
    [24] J. Wang, R. Achanta, M. Kankanhalli, and P. Mulhem, "A Hierarchical Framework for Face Tracking using State Vector Fusion for Compressed Video", Acoustics, Speech, and Signal Processing, (ICASSP'03), vol.3, pp. 209-212, 2003.
    [25] N. Strobel, S. Spors, and R. Rabenstein, "Joint Audio-video Object Localization and Tracking", IEEE Signal Processing Magazine, pp. 22-31, 2001.
    [26] H. Mederios, J. Park, and A. C. Kak, "Distributed Object Tracking using a Cluster-based Kalman Filter in Wireless Camera Network", IEEE Journal of Selected Topics in Signal Processing, Vol. 2, no.4, pp.448-463, 2008.
    [27] R. Hartlry and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2nd edition, 2003.
    [28] K. H. Kim, “Development of Track to Track Fusion Algorithm”, Proc. Amer. Contr. Conf., MD, 1994.
    [29] D. J Bardsley, and L Bai, “3D Surface Reconstruction and Recognition”, Proc. SPIE, Vol. 6539, Apr. 2007.
    [30] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting Moving Objects, Ghosts and Shadows in Video Streams”, IEEE Trans. on Patt. Anal. and Machine Intell., Vol. 25, no. 10, pp. 1337-1342, Oct. 2003.
    [31] H. Man, F. Kossentini, and M. J. T. Smith, “An Error Resilient Coding Technique for JPEG 2000,” Proc. of 2000 International Conference on Image Processing, Vol. 3, pp. 364 -367, 2000.
    [32] I. M., Salma, S. J. Liang, and H. Chen, “Error-Resilience Coding in JPEG 2000 and MPEG4,” IEEE Journal on Selected Areas in Communications, Vol. 18, no. 6, pp. 899-914, June 2000.
    [33] H. Man, F. Kossentini, and M. J. T. Smith, “A Family of Efficient and Channel Error-Resilience Wavelet/Subband Image Coders,” IEEE Trans. On Circuit and System for Video Technology, Vol. 9 no. 1, pp. 95-108, Feb. 1999.
    [34] I. Sodagar, B. B. Chai and J. Wus, “A New Error-Resilience Technique for Image Compression Using Arithmetic Coding,” Redmill, D.W.; Bull, D.R., Proc. of International Conference on Image Processing, Vol. 1 , pp. 109 -112, 1996.
    [35] D. W. Redmill and D. R. Bull, “Error Resilient Arithmetic Coding of Still Images,” in IEEE International Conference on Image Processing, Los Alamitos, CA, USA, 96CH35919, vol. 2, pp. 109–112, 1996.
    [36] D. W. Redmill, and N. G. Kingsbury, “The EREC: an Error-resilient Technique for Coding Variable-length Blocks of Data,” IEEE Trans. on Image Processing, Vol. 5, no.4, pp. 565-574, Apr. 1996.
    [37] JPEG 2000 Part I Final Committee Draft Version 1.0, ISO/IEC JTC 1/SC 29/WG1 N1646R, Mar. 2000.
    [38] M. Rabbani and R. Joshi, “An Overview of the JPEG 2000 Still Image Compression Standard” Signal Processing: Image Communication, vol. 17, no 1, pp 3-48, Jan. 2002.
    [39] D. S. Taubman and Michael W. Marcellin, JPEG 2000: Image Compression Fundamentals, Standards and Practice. Norwell, MA: Kluwer, 2002.
    [40] D. S. Taubman, “Embedded Block Coding in JPEG 2000,” Proc. of IEEE International Conference on Image Processing, Vancouver, Canada, Vol. 2, pp. 33-36, 2000.
    [41] P. J. Lee and L.G. Chen, “Bit-plane Error Recovery via Cross Subband for Image Transmission in JPEG 2000” IEEE International Conference on multimedia and Expo, pp. 149-152, Aug. 2002.
    [42] P. J. Lee and L.G. Chen, “Error Concealment Algorithm Using Interested Direction for JPEG 2000 Image Transmission,” IEEE Trans. on Consumer Electronics, Vol. 49, No. 4, Nov. 2003.
    [43] L. Atzori, S. Corona, and D. D Giusto, “Error Recovery in JPEG 2000 Image Transmission,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol.3, pp.1733-1736, 2001.
    [44] C. R. Huang, P. C. Chung, K. W. Lin, and S. C. Tseng, " Wheelchair Detection Using Cascaded Decision Tree", IEEE Transactions on Information Technology in BioMedicine, Vol. 14, no. 2, pp. 292-300, Mar. 2010.
    [45] C. A. Yang, and P. C. Chung, "Recovery of 3-D Location and Orientation of a Wheelchair in a Calibrated Environment by using Single Perspective Geometry", IEEE TENCON, pp. 1-4, 2007.
    [46] A. Myles, N, V. Lobo, and M. Shah, “Wheelchair Detection in a Calibrated Environment”, The 5th Asian Conference on Computer Vision, 2002.
    [47] P. Beardsley, “Wheelchair Detection using Stereo Vision”, MERL TR2007-044, Jan. 2007
    [48] D. Chen, R. Malkin, and J. Yang, "Multimodal Detection of Human Interaction Events in a Nursing Home Environment", Proceedings of ACM International Conference on Multimodal Interface (ICMI), pp. 82 - 89, 2004.
    [49] S. Park and J. K. Aggarwal. "Event Semantics in Two-person Interactions”, International Conference on Pattern Recognition, Vol. 4, Aug. 2004.
    [50] S. Park and J. K. Aggarwal. "Semantic-level Understanding of Human Actions and Interactions using Event Hierarchy", IEEE International Workshop on Computer Vision and Pattern Recognition, June 2004.
    [51] W. Lu and Y. P. Tan, “A Vision-based Approach to Early Detection of Drowning Incidents in Swimming Pools”, IEEE Trans. on Circuits and System for Video Technology, Vol.14, no. 2, Aug. 2004.
    [52] O. Masoud and N. Papanikolopoulos, “Recognizing human activities”, Proc. IEEE Conf. Advanced Video and Signal Based Surveillance, pp.157-162 , July 2003.
    [53] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, “Computer Vision System for In-house Video Surveillance”, IEE Proc. Vision Image and Signal Process., Vol. 152, no. 2, pp. 242-249, Apr. 2005.
    [54] R. O. Duda, and P. E. Hart, "Use of the Hough Transformation to Detect Lines and Curves in Pictures," Comm. ACM, Vol. 15, pp. 11–15, Jan. 1972.
    [55] P. C. Chung, C. W Wu, and Y. L. Huang, “A JPEG2000 Error Resilience Method Using Uneven Block-sized Information Included Markers,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, no.3, pp. 420-424, Mar. 2005.
    [56] C. W. Wu, Y. N. Chung, and P. C. Chung, “A Hierarchical Estimator for Object Tracking”, EURASIP Journal on Advances in Signal Processing (May 2010 Accepted, SCI 1.151).
    [57] C. W. Wu, P. C Chung, and C. D. Liu, “Assistance Instruments Detection using Geometry Constrained Knowledge for Health care Centers”, The Workshop on Multimedia and Semantic Technologies, May 2010.
    [58] C. W. Wu, Y. N Chung, and P. C. Chung, “A Kalman Filtering Based Data Fusion for Object Tracking”, The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA2010), June 2010.

    下載圖示 校內:2015-07-14公開
    校外:2015-07-14公開
    QR CODE