簡易檢索 / 詳目顯示

研究生: 吳培碩
Wu, Pei-Shuo
論文名稱: 應用二維輸砂模式探討水庫沖砂渠道與排砂效率之研究
Two Dimensional Numerical Evaluation of Flushing Channels on Reservoir Sediment Flushing Efficiency
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 142
中文關鍵詞: 阿公店水庫空庫排砂排砂效率
外文關鍵詞: Agongdian Reservoir, Empty Flushing, Sediment Release Efficiency
相關次數: 點閱:34下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣目前水庫興建上已趨於飽和,加上近幾年環保意識提升,透過建造水庫來提升總蓄水量已經不是優先選項,勢必得將目光放在如何使現有水庫達到永續發展,早年間建造的水庫多半面臨庫容銳減的問題,目前主要透過工程手段更新水庫現狀及調整排砂方式來處理,維護水庫庫容較有效且成本較低之方法為水力排砂,而水力排砂效果的高低取決於水庫幾何條件、淤砂粒徑、泥砂淤積型態、水流流量及水深等。在眾多水力排砂方式中,空庫排砂之排砂對維持水庫庫容效果最好(Chaudhry, 2014),而阿公店水庫於2005年更新工程完成,其透過泥砂管理來逐漸緩和淤積的情形,為臺灣少數採用空庫排砂的水庫,若能夠深入探究空庫排砂應用於臺灣水庫的影響,將更能夠完善整體水庫泥砂管理策略。
    濁水溪的產砂一直是阿公店水庫的主要砂源,水庫管理單位每年於空庫防淤期間會在庫區內挖設一條沖砂渠道,自濁水溪匯流口延至溢洪道出口,目的在於將濁水溪產生之高濃度濁水迅速帶往溢洪道,減少泥砂於庫區內落淤的情形。因此,本研究主要探討兩條不同位置的沖砂渠道對於庫區內排砂效率的影響情形,於模式中透過渠道的單一及複合設置,分別包含(1)現有沖砂渠道;(2)舊存沖砂渠道;(3) 兩沖砂渠道並用,共計三種策略,搭配低水位、中水位及高水位事件,來探討不同的情境下,對庫區泥砂的影響與排砂效率之關係。
    綜觀各種排砂效率模擬結果,事件中庫區水位高度對排砂效率的影響,遠大於不同渠道布設策略的結果,因此,當水位低於31 m時,運用「現有沖砂渠道」策略能達到最好的排砂效率,當水位介於31 m至32 m之間時,則運用「兩沖砂渠道並用」策略達能夠到最佳的排砂效率。

    Taiwan's current reservoir construction has reached a saturation point. Older reservoirs often face issues with reduced storage capacity, which is primarily addressed through engineering methods to update the reservoir’s condition and adjust sediment flushing methods. Hydraulic flushing is a more effective and cost-efficient method for maintaining reservoir capacity. The effectiveness of hydraulic flushing depends on geometric conditions, sediment grain size, sedimentation patterns, flow rate, and water depth. Among various hydraulic flushing methods, empty flushing is the most effective for maintaining reservoir capacity (Chaudhry, 2014). The Agongdian Reservoir, which completed its updating project in 2005, uses sediment management to gradually alleviate sedimentation issues and is one of the few reservoirs in Taiwan employing empty flushing. Delving into the impact of empty flushing on Taiwanese reservoirs could further refine overall sediment management strategies.
    The sediment from the Zhuoshui River has always been a major source for the Agongdian Reservoir. Each year, during the sediment prevention period when the reservoir is empty, a flushing channel is excavated from the confluence of the Zhuoshui River to the spillway outlet to quickly direct the high-concentration turbid water away and reduce sedimentation in the reservoir area. This study investigates the effects of two different flushing channel locations on sediment release efficiency. The model examines single and combined channel setups, including (1) the existing flushing channel; (2) the old flushing channel; and (3) the use of both channels, across three strategies with low, medium, and high water levels to explore the impact of different scenarios on sediment release efficiency.
    Based on the simulation results of sediment release efficiency, the impact of reservoir water level on sediment release efficiency is significantly greater than the effect of different channel layout strategies. Therefore, when the water level is below 31 m, using the "existing flushing channel" strategy achieves the best sediment release efficiency. When the water level is between 31 m and 32 m, the "using both flushing channels" strategy provides the optimal sediment release efficiency.

    中文摘要 I 英文摘要 II 致謝 X 目錄 XI 圖目錄 XIV 表目錄 XVIII 第一章 諸論 1 1.1 前言 1 1.2 研究動機與目的 2 1.2.1研究動機 2 1.2.2研究目的 2 1.3 論文架構 3 第二章 文獻回顧 5 2.1 泥砂管理策略 5 2.1.1 洩砂 8 2.1.2 沖砂 9 2.2 國內外空庫排砂案例 10 2.3 阿公店水庫歷年研究 17 2.3.1凝聚性沉滓水庫之排砂策略研究 17 2.3.2空庫排砂效率之研究 18 2.3.3空庫防淤操作紀錄與檢討 21 2.3.4排砂操作策略探討 22 2.4 沖砂渠道探討 25 第三章 研究方法 33 3.1 研究區域概述 33 3.1.1 地文資料 35 3.1.2 水文資料 38 3.1.3 崩塌地分佈 40 3.1.4 流量及水位 42 3.1.5 泥砂淤積情況 42 3.2 數值模式介紹 44 3.2.1 SRH-2D 模式介紹 44 3.2.2 水流控制方程式 45 3.2.3 泥砂控制方程式 47 3.3 模式建立及模式內各參數設置 48 3.3.1 水理模式 48 3.3.2 動床模式 50 3.3.3 泥砂率定曲線 58 3.3.4 其他模式參數 61 3.3.5 敏感度分析 61 3.4 評估指標 62 3.5 資料蒐集 62 3.5.1 模擬事件 63 3.5.2 工程情境 64 第四章 結果與討論 68 4.1 率定結果 68 4.1.1 敏感度分析結果 68 4.2 驗證結果 73 4.3 各情境下結果分析及探討 76 4.3.1 現有沖砂渠道布設對應低水位事件之情境 77 4.3.2 現有沖砂渠道布設對應中水位事件之情境 80 4.3.3 現有沖砂渠道布設對應高水位事件之情境 83 4.3.4 舊存沖砂渠道布設對應低水位事件之情境 87 4.3.5 舊存沖砂渠道布設對應中水位事件之情境 90 4.3.6 舊存沖砂渠道布設對應高水位事件之情境 93 4.3.7 兩沖砂渠道並用設對應低水位事件之情境 97 4.3.8 兩沖砂渠道並用設對應中水位事件之情境 100 4.3.9 兩沖砂渠道並用設對應高水位事件之情境 103 4.4 不同沖砂渠道布設情境之結果與分析 107 4.4.1 低水位事件探討與分析 107 4.4.2 中水位事件探討與分析 109 4.4.3 高水位事件探討與分析 111 4.5 討論 113 4.5.1 參數調整方式 113 4.5.2 渠道布設與泥砂運移之關係 113 4.5.3 同水位條件不同排砂渠道布設對排砂效率之影響 114 4.5.4 同排砂渠道布設不同水位條件對排砂效率之影響 116 第五章 結論與建議 118 5.1 結論 118 5.2 建議 119 參考文獻 120

    1. Chen, Y., J. Syvitski, S. Gao, I. Overeem, and A. J. Kettner (2012), Socio-economic impacts on flooding: A 4000-year history of the Yellow River, China, AMBIO, (7), 682–698.
    2. Chiu, Y.-J., Lee, H.-Y., Wang, T.-L., Yu, J., Lin, Y.-T., & Yuan, Y. (2019). Modeling Sediment Yields and Stream Stability Due to Sediment-Related Disaster in Shihmen Reservoir Watershed in Taiwan. Water, 11(2)
    3. Dadson, S.J.; Hovius, N.; Chen, H.; Dade,W.B. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 2003, 426, 648.
    4. Flokstra, C. (1976). ‘‘Generation of two-dimensional horizontal secondary currents.’’ Rep. No. S163, Part II, Delft Hydraulics Laboratory, Delft, The Netherlands.
    5. French, J. R. (2010). Critical perspectives on the evaluation and optimization of complex numerical models of estuary hydrodynamics and sediment dynamics. Earth Surface Processes and Landforms: The Journal of the British eomorphological Research Group, 35(2), 174–189.
    6. Huang, J. S. (1994), A study of the sustainable water resources system in Taiwan considering the problems of reservoir desilting, Taiwan Provincial Water Conservancy Bureau, 159 pp
    7. Huang, Lin, Ho, & Tan. (2019). Estimation of Reservoir Sediment Flux through Bottom Outlet with Combination of Numerical and Empirical Methods. Water, 11(7).
    8. Huang, C.-C., Lai, Y. G., Lai, J.-S., & Tan, Y.-C. (2019). Field and Numerical Modeling Study of Turbidity Current in Shimen Reservoir during Typhoon Events. Journal of Hydraulic Engineering, 145(5)
    9. Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., . . . Yang, C. T. (2014). Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth's Future, 2(5), 256-280.
    10. Lai, Y. G. (2008). SRH-2D version 2: Theory and User's manual, sedimentation and river hydraulics–Two-Dimensional River flow modeling. US Department of Interior. Bureau of Reclamation. November.
    11. Lai, Y. G. (2010). Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh. Journal of Hydraulic Engineering, 136(1), 12–23.
    12. Lai, J.-S., & Shen, H. W. (2010). Flushing sediment through reservoirs. Journal of Hydraulic Research, 34(2), 237-255.
    13. Minh Duc, B., Wenka, T., and Rodi, W. (1996). ‘‘Depth-average numerical modelling of flow in curved open channels.’’ Proc., 11th Int. Conf. omputational Methods, Cancun, Mexico ~CD-ROM!
    14. Morris, G. L., and J. Fan (1998), Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs and Watersheds for Sustainable Use, McGraw-Hill Book Co., New York.
    15. Otsubo, K., & Muraoka, K. (1988). Critical shear stress of cohesive bottom sediments. Journal of Hydraulic Engineering, 114(10), 1241-1256.
    16. Kantoush, S. A., & Schleiss, A. J. (2009). Channel formation during flushing of large shallow reservoirs with different geometries. Environmental technology, 30(8), 855-863.
    17. S.A. Kantoush, J.-L. Boillat, E. Bollaert, and A. Schleiss, Influence of shallow reservoir geometry on the flow pattern and sedimentation process by suspended sediments, Wasser energie luft 100 (2008),pp.13-21.
    18. Sakhaee, F. (2020). Steady and unsteady flow simulation with SRH-2D. Journal of Ocean Engineering and Science, 5(4), 297-309.
    19. Su, H. T., You, G. J. Y., & Chu, C. C. (2020). Using two‐dimensional modeling to evaluate strategies of sediment reduction and evacuation for Nanshi river under Guishan dam operations. River Research and Applications, 36(10), 2063-2077.
    20. Sumi, T. (2008), Evaluation of efficiency of reservoir sediment flushing in Kurobe River, ICSE, in 4th International Conference on Scour and Erosion, pp. 608–613, Tokyo, Japan
    21. Wang, H.-W., Kondolf, M., Tullos, D., & Kuo, W.-C. (2018). Sediment Management in Taiwan’s Reservoirs and Barriers to Implementation. Water, 10(8).
    22. Wang, H.-W., Tsai, B.-S., Hwang, C., Chen, G.-W., & Kuo, W.-C. (2020). Efficiency of the Drawdown Flushing and Partition Desilting of a Reservoir in Taiwan. Water, 12(8).
    23. Wang, Y.-H., Chu, C.-C., You, G. J.-Y., Gupta, H. V., & Chiu, P.-H. (2020). Evaluating Uncertainty in Fluvial Geomorphic Response to Dam Removal. Journal of Hydrologic Engineering, 25(6).
    24. White, W. R. (2001), Evacuation of Sediment from Reservoirs, Thomas Telford, London, U. K.
    25. 何彥廷(2018),阿公店水庫排砂操作策略探討,國立成功大學土水利及海洋工程學系碩士論文。
    26. 財團法人成大水利海洋研究發展文教基金會(2016),阿公店水庫空庫防淤泥砂觀測及防洪運轉決策支援,經濟部水利署南區水資源局。
    27. 財團法人成大水利海洋研究發展文教基金會(2017),阿公店水庫空庫防淤泥砂觀測及防洪運轉決策支援,經濟部水利署南區水資源局。
    28. 財團法人成大水利海洋研究發展文教基金會(2018),阿公店水庫空庫防淤泥砂觀測及防洪運轉決策支援,經濟部水利署南區水資源局。
    29. 財團法人成大水利海洋研究發展文教基金會(2019),阿公店水庫空庫防淤泥砂觀測及防洪運轉決策支援,經濟部水利署南區水資源局。
    30. 財團法人成大水利海洋研究發展文教基金會(2020),阿公店水庫空庫防淤泥砂觀測及防洪運轉決策支援,經濟部水利署南區水資源局。
    31. 財團法人成大水利海洋研究發展文教基金會(2021),阿公店水庫空庫防淤泥砂觀測及防洪運轉決策支援,經濟部水利署南區水資源局。
    32. 焦恩澤、繆鳳舉、林秀芝,2008,水庫調水調砂,黃河水利出版社。
    33. 經濟部中央地質調查所,103年,山崩與地滑地質敏感區劃定計畫書(高雄市)。
    34. 經濟部水利署水利規劃試驗所. (2011). 氣候變遷下臺灣南部河川流域土砂處理對策研究-以高屏溪為例。
    35. 經濟部水利署南區水資源局(2018),阿公店水庫集水區保育實施計畫。
    36. 詮華國土測繪有限公司(2019),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
    37. 蔡秉修(2016),阿公店水庫空庫排砂效率之探討,國立成功大學土水利及海洋工程學系碩士論文。
    38. 楊錦釧. (1998). 凝聚性沉滓水庫之排砂策略研究---水庫內凝聚性沉滓淤積行為之模擬。
    39. 賴進松,1998,阿公店水庫淤泥沖刷啟動之研究,台灣水利經濟部水利署水利規劃試驗所。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE