簡易檢索 / 詳目顯示

研究生: 陳冠蓉
Chen, Kuan-Jung
論文名稱: 溶膠凝膠法製作鈮酸鎂薄膜及其在透明微電子電路之應用
Sol–Gel Derived MgNb2O6 Thin Films for Transparent Microelectronic Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 106
中文關鍵詞: 溶膠凝膠法鈮酸鎂薄膜透明電子電路電阻式記憶體
外文關鍵詞: Sol gel, MgNb2O6, thin film, transparent, RRAM
相關次數: 點閱:111下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中利用溶膠凝膠法在ITO基板上塗佈 MgNb2O6薄膜並利用電子束蒸鍍法鍍製Al金屬上電極,製作出金屬-絕緣層-金屬(MIM)結構的平面電容器。本實驗分成兩部分,第一部分探討MgNb2O6介電薄膜在不同退火溫度下的物性與介電特性的關係。由實驗可知,在大氣下退火500℃時MgNb2O6為非晶薄膜,介電常數約為45,介電損耗0.08,漏電流密度約在2×10-7A/cm2左右(外加偏壓1 V時),且具有良好透光性,平均穿透率80%,光能隙大小為3.97 eV。之後研究於不同退火氣氛下成長MgNb2O6薄膜的物性與介電特性之間的表現,由實驗可知,在氧氣氣氛下退火可獲得最小介電損耗,我們也建立了介電損耗對頻率的等效模型,評估其作為薄膜電晶體之透明介電薄膜及MIM電容介電層之可行性。
    在第二部分,使用Al電極和MgNb2O6薄膜作成MIM結構的電阻式記憶體。根據實驗結果,當電極退火200℃,限制電流在0.1 A時具有雙極性電阻轉換特性,之後比較元件在不同氣氛下退火與大氣下退火的電阻轉換特性差異和高低電阻值分佈等特性,從中找出元件的漏電流傳導機制為空間電荷限制電流轉換機制。我們並藉由二次離子質譜儀的縱深分析和漏電流與溫度之相依性推測元件之電阻轉換機制為導電燈絲機制,導電燈絲由氧空缺所組成。

    In this study, to produce a metal - insulator - metal (MIM) structure of the planar capacitor, the sol-gel method was used for coating MgNb2O6 thin film on the indium tin oxide (ITO) coated substrates and aluminum metal top electrode coated by electron beam evaporation. The experiment was divided into two parts.
    First, we discussed physical properties and dielectric properties of MgNb2O6 thin films annealing at different temperatures. The experiment showed that MgNb2O6 thin film annealed at 500℃ would be amorphous, which had excellent transparency that its average transparency was 80%, optical band gap size being about 3.97 eV. It also had great electric characteristic having the lowest dielectric loss 0.08 and well dielectric constant being about 45,leakage current density 2×10-7 A/cm2. Followed the result, treating MgNb2O6 film with different annealing atmosphere was investigated for physical properties and dielectric properties comparing with air. The experiment showed that annealing in an oxygen atmosphere obtain the minimum dielectric loss, we also have established the equivalent circuit model for the dielectric loss versus frequency and evaluated the feasibility of applying on transparent thin film transistors and the dielectric layer of MIM capacitor.
    Second, random access memory devices were fabricated as a MIM structure with an electrode area of 0.5 mm × 0.5 mm. According to the experimental results, the bipolar switching behavior was observed repeatedly with the application of an electrical forming process when top electrode annealing at 200℃, current compliance 0.1 A. The leakage current was followed space-charge-limited-current (SCLC) mechanism, and the resistive switching behavior, according to the analysis of Secondary ion mass spectrometry (SIMS) and temperature dependence of current, should followed the filament theory and the filament was composed by oxygen deficiency.

    摘要III AbstractIV 目錄VII 表目錄X 圖目錄XI 第一章 緒論1 1.1 前言1 1.2 研究目的2 1.3 高介電係數材料技術之選擇3 第二章 文獻回顧6 2.1 介電材料之介電常數6 2.1-2 介電極化6 2.1-3 MIM結構之C-V 量測8 2.2 透明元件與電路9 2.2-1透明薄膜電晶體9 2.2-2 透明記憶體10 2.2-3 漏電流電性傳導機制12 2.2-3-1 蕭特基發射(Schottky Emission)12 2.2-3-2 歐姆接觸(Ohmic Contact)12 2.2-3-3 穿隧(Tunneling)13 2.2-3-4 普爾-法蘭克發射(Poole-Frenkel Emission)13 2.2-3-5 空間電荷限制傳導(Space-Charge Limited Current, SCLC)14 2.2-4 電阻式記憶體 19 2.2-5 電阻轉換機制 23 2.2-5-1 導電燈絲機制23 2.2-5-2 界面導電機制24 2.2-5-3 離子遷徙機制25 2.2-6 RRAM之材料29 2.2-6-1 一元金屬氧化物29 2.2-6-2 鈣鈦礦氧化物29 2.2-6-3 有機氧化物29 2.3 MgNb2O6之文獻回顧34 2.3-1 MgNb2O6晶體結構34 2.3-2 MgNb2O6之微波介電陶瓷性質34 第三章 實驗方法及步驟36 3.1 溶膠凝膠法(Sol-Gel)介紹36 3.1-1 薄膜製作36 3.1-2 低溫焦化處理37 3.1-3 高溫結晶熱處理37 3.2 電子束蒸鍍法((Thermal Evaporation)介紹38 3.3 實驗材料39 3.4 實驗設備40 3.4-1旋轉塗佈機40 3.4-2磁石攪拌平台40 3.4-3高溫爐40 3.4-4 電子束蒸鍍機40 3.5 實驗流程43 3.6 分析與鑑定儀器44 3.6-1 α-step膜厚計44 3.6-2多功能X光薄膜繞射儀 (X-ray Driffractometer, XRD)44 3.6-3掃描式電子顯微鏡(Scanning Electron Microscope, SEM)45 3.6-4能量分散光譜儀(Energy Dispersive Spectroscopy, EDS)46 3.6-5 X光光電子分析儀(X-ray Photoelectron Spectroscope, XPS)46 3.6-6二次離子質譜儀(Atomic Force Microscope, SIMS)46 3.6-7拉曼光譜(Raman spectra)47 3.6-8紫外線/可見光分光光譜儀(UV/VIS/NIR spectrometers)48 3.6-9半導體參數分析儀48 第四章 結果與討論49 4.1 不同退火溫度對MgNb2O6 薄膜物理性質之影響49 4.1-1 XRD薄膜分析49 4.1-2 Raman光譜分析52 4.1-3 SEM薄膜分析55 4.1-4 XPS 薄膜表面化學鍵結分析與縱深分析57 4.1-5 薄膜光學性質量測62 4.1-6 ITO/MgNb2O6/Al 電性分析66 4.1-6-1 電容-電壓曲線(C-V Curve)66 4.1-6-2 電容-頻率曲線(C-F Curve)66 4.1-6-3 漏電關係(I-V Curve)67 4.2 不同退火氣氛對MgNb2O6 薄膜物理性質之影響72 4.2-1 XRD和SEM薄膜分析72 4.2-2 XPS薄膜表面化學鍵結分析75 4.2-3 薄膜光學性質分析78 4.2-4 ITO/MgNb2O6/Al 電性分析80 4.2-4-1 電容-電壓曲線(C-V Curve)80 4.2-4-2 電容-頻率曲線(C-F Curve)80 4.2-4-3 漏電關係(I-V Curve)81 4.3 不同氣氛下薄膜電阻轉換現象86 4.3-1 大氣下的電阻轉換現象86 4.3-1-1 鋁電極退火300℃之電阻轉換現象86 4.3-1-2 鋁電極退火200℃之電阻轉換現象87 4.3-2 氮氣下退火的電阻轉換現象94 4.3-3 氧氣下的電阻轉換現象97 4.4 電阻轉換機制之成分分析99 第五章 結論102 參考文獻103

    [1] B. Cheng, M. C. Cao, and R. Rao, “The Impact of High-κ Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFETs”, IEEE Trans. Electron Dev., 46 1537–1544, (1999).

    [2] V. Mikhelashvili, and G. Eisenstein, “Effects of Annealing Conditions on Optical and Electrical Characteristics of Titanium Dioxide Films Deposited by Electron Beam Evaporation”, Appl. Phys. Lett., 89 3256–3269, (2001).

    [3] M. H. Cho, Y. S. Roh, and C. N. Whang, “Thermal Stability and Structural Characteristics of HfO2 Films on Si (100) Grown by Atomic-layer deposition”, Appl. Phys. Lett., 81 472–474, (2002).

    [4] T. V. Kundozerova, A. M. Grishin, and G. B. Stefanovich, “Anodic Nb2O5 Nonvolatile RRAM”, IEEE Trans. Electron Dev., 59 [4], (2012).

    [5] M. H. Tang, Z. P. Wang, and J. C. Li, “Bipolar and Unipolar Resistive Switching Behaviors of Sol–gel-derived SrTiO3 Thin Films with Different Compliance Currents”, Semicond. Sci. Tech., 26 075019, (2011).

    [6] P. Y. Lai, “Investigation and Characterization of Au Nanoparticles Incorporated Polymer Thin Films for Nonvolatile Resistance Random Access Memories”, Department of Mater. Sci. and Engin., 5, (2010).

    [7] M. C. Cisneros-Morales, and C. R. Aita, “The Effect of Nanocrystalline Size in Monoclinic HfO2 Films on Lattice Expansion and Near Edge Optical Absorption” Appl. Phys.Lett., 96 [19] 191904–1–3, (2010).

    [8] L. Q. Yin, and J. B. Peng, “Hole Transport in Polymer P3HT with Different Annealing Temperatures”, Acta Physica Sinica., 58 [5] 3456, (2009).

    [9] S. T. Tzeng, “Monodispersed TiO2 Microspheres and TiO2 Nanoparticles by Sol-Gel Process for Photocatalytic Applications”, (2010).

    [10] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based Resistive Switching Memories Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater., 21 2632–2663, (2009).

    [11] Y. Li, S. Long, and M. Zhang, “Resistive Switching Properties of Au/ZrO2/Ag Structure for Low-voltage Nonvolatile Memory Applications”, IEEE Electron Device Lett., 312 117–119, (2010).

    [12] A. Sawa, “Resistance Switching in transition metal oxide”, Mater. Today, 11 28–36, (2008).

    [13] K. Szot, W. Speier, and G. Bihlmayer, “Switching The Electrical Resistance of Individual Dislocations in Single-crystalline SrTiO3”, Nautre Mater., 5 312–320, (2006).

    [14] C. Y. Lin, D. Y. Lee, and S. Y. Wang, “Effect of Thermal Treatment on Resistive Switching Characteristics in Pt/Ti/Al2O3/Pt Devices”, Surf. Coat. Technol., 203 628–631, (2008).

    [15] C. Y. Lin, D. Y. Lee, and S. Y. Wang, “Reproducible Resistive Switching Behavior in Sputtered CeO2 Polycrystalline Films,” Surf. Coat.Technol., 203 480–483, (2008).

    [16] C. Y. Liu, “電阻式非揮發性記憶體之近期發展,” 電子月刊, 117 82–189, (2005).

    [17] C. Nauenheim, C. Kügeler, and A. Rüdiger, “Nano-Crossbar Arrays for Nonvolatile Resistive RAM (RRAM) Applications”, IEEE Xplore, 978–1–4244–2104–6/08, (2008).

    [18] G. S. Park, X. S. Li, and D. C. Kim, “Observation of Electric-field Induced Ni Filament Channels in Polycrystalline NiOx Film”, Appl. Phys. Lett., 91 222103, (2007).

    [19] W. Y. Chang, H. W. Huang, and W. T. Wang, “High Uniformity of Resistive Switching Characteristics in a Cr/ZnO/Pt Device”, Electro. Soci., 159 [3] G29–G32, (2012).

    [20] H. H. Huang, W. C. Shih, and C. H. Lai, “Nonpolar Resistive Switching in the Pt/MgO/Pt Nonvolatile Memory Device”, Appl. Phys. Lett., 96 193505, (2010).

    [21] V. Sh. Yalishev, Y. S. Kim, and B. H. Park, “Resistance states dependence of photoluminescence in Ag/ZnO/Pt structures”, Appl. Phys. Lett., 99 012101, (2011).

    [22] S. Yu, X. Guan, and H. S. Philip Wong, “Conduction Mechanism of TiN/HfOx/Pt Resistive Switching Memory: A Trapassisted-tunneling Model”, Appl. Phys. Lett., 99 063507, (2011).

    [23] D. A. Neamen, Semiconductor Physics and Devices, McGraw-Hill Science Inc., New York, (2002).

    [24] J. C. Ranuarez, M. J. Deen, Chih-Hung Chen, “A Review of Gate Tunneling Current in MOS Devices”, Microelectronics Reli., 46 1939–1956, (2006).

    [25] S. M. Sez, Physics of Semiconductor Devices, 2nd Edition, John Wiley & Sons Inc., New York, USA., (1981).

    [26] W. Y. Chang, J. H. Liao, Y. S. Lo, and T. B. Wu, “Resistive Switching Characteristics in Pr0.7Ca0.3MnO3 Thin Films on LaNiO3-electrodized Si Substrate”, Appl. Phys. Lett., 94 172107, (2009).

    [27] K. C. Kao, and W. Hwang, Electrical Transport in Solids, Academic, New York., (1970).

    [28] 李雅明,“固態電子學”,全華科技圖書股份有限公司,(1995).

    [29] H. C. Lee,“Microwave Dielectric Properties and Structure of Zn(Nb1-xTax)2O6 Ceramics”, (2010).

    [30] L. P. S. Santos, E. R. Camargo, and M. T. Fabbro, “Wet-chemical Synthesis of Magnesium Niobate Nanoparticles Powders”, Ceramics Inter., 33 1205–1209, (2007).

    [31] M. T. Sebastian, “New Low Loss Microwave Dielectric Ceramics in the BaO-TiO2- Nb2O5/ Ta2O5 System”, J. Mater. Sci. Mater., El [10] 475–478, (1999).

    [32] H. J. Lee, I. T. Kim, and K. S. Hong, “Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta)”, JPN. J. Appl. Phys., 36 [10A], L1318–L1320, (1997).

    [33] T. H. Fang, Y. J. Hsiao, and Y. S. Chang, “Luminescent and Structural Properties of MgNb2O6 Nanocrystals”, Current Opinion in Solid State and Mater. Sci., 12 51–54, (2008).

    [34] L. P. S. Santos, E. Longo, and E. R. Leite, “Combined Wet-chemical Process to Synthesize 65PMN-35PT Nanosized Powders”, Alloys and Comp., 372 111–115, (2004).

    [35] Yoichi Kizaki, Yuji Noguchi, and Masaru Miyayama, “Defect control for low leakage current in K0.5Na0.5NbO3 single crystals”, Appl. Phys. Lett., 89 142910, (2006).

    [36] W. H. Haung, “Low Temperature Growth and Physical Properties of Zn1-x-yAlxSnyO thin films”, (2010).

    [37] R. J. Thomas, D. C. Dube, M. N. Kamalasanan, S. Chandra, and A. S. Bhalla, J. Appl. Phys., 82 4484, (1997).

    [38] X. F. Song, R. Fu, and H. He, “Frequency Effects on The Dielectric Properties of AlN Film Deposited by Radio Frequency Reactive Magnetron Sputtering”, Microelectronic Engin., 86 2217–2221, (2009).

    [39] J. Jang, J. C. Park, and D. Kong, “Endurance Characteristics of Amorphous-InGaZnO Transparent Flash Memory With Gold Nanocrystal Storage Layer”, IEEE Trans. Electron Dev., 58 [11], (2011).

    [40] Nor Fadilah Chayed, and Nurhanna Badar, “Optical Band Gap Energies of Magnesium Oxide (MgO) Thin Film and Spherical Nanostructures”, AIP Conf. Proc., Antalya, Turkey, 1400 328–332, (2011).

    [41] G. Ramírez, and S.E. Rodil, “Amorphous niobium oxide thin films”, Non-Crystalline Soli., 356 2714–2721, (2010).

    下載圖示 校內:2018-07-31公開
    校外:2018-07-31公開
    QR CODE