| 研究生: |
李重光 Lee, Chung-Kuang |
|---|---|
| 論文名稱: |
利用狀態-空間轉換技巧之高速循環冗餘檢查碼電路產生器設計 High-Speed CRC Generators Using State-Space Transformation Techniques |
| 指導教授: |
謝明得
Shieh, Ming-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 循環冗餘檢查碼 |
| 外文關鍵詞: | Gigabit, pipeline, parallel CRC, state-space transformation |
| 相關次數: | 點閱:104 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用於計算循環冗餘檢查碼(CRC)的Linear Feedback Shift Register (LFSR)電路,平行處理技巧是提供了在低運作頻率下提高輸出量 (throughput) 的方法。理想上,LFSR電路每週期處理M位元的資料其運作頻率可以減少為原來的M倍。但是由於增加輸出量LFSR電路中的Feedback Loop電路複雜度也會跟著增加,導致critical path時間延遲增加而限制了實際的輸出量增加只為原來的M/2倍。在本論文中,我們利用狀態-空間轉換技巧將M位元LFSR電路中Feedback loop電路的複雜度降為和一位元相同的LFSR電路。再透過pipeline技巧使整個電路的critical path時間延遲降低進而使實際輸出量提高至預期的M倍。最後我們更以狀態-空間轉換技巧為基礎發展了CRC產生器。透過CRC產生器可以自動產生指定的CRC電路。
Parallelization of the linear-feedback shift register used to compute the cyclic redundancy code (CRC) has long been recognized as a way to increase throughput. In all applications of this technique reported previously, the achievable increase in throughput is limited by an increase in the circuit complexity within the feedback loop; for a cir¬cuit that processes M bits of the input sequence in parallel, the throughput increase, or speed-up, appears to be asymptotically lim¬ited to M/2. In this thesis, we use a state-space transformation technique for the M-bits-at-a-time CRC system that reduces the complexity of its feed¬back loop to exactly that of the original one-bit-at-a-time system. The resulting hardware implementations can achieve a full speed-up factor of M compared to the one-bit-at-a-time system. We also develop the CRC generator to generate synthesizable Verilog RTL codes for specified generating polynomials.
[1] S. Lin and D. J. Costello, Jr, Error Control Coding: Fundamentals and applications, Prentice-Hall, Inc., 1983.
[2] S. B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-Hall, Inc., 1995.
[3] T. B. Pei and C. Zukowski, "High-speed parallel CRC circuits in VLSI," IEEE Transactions on Communications, Vol. 40, No. 4, pp. 653-657, 1992.
[4] M. D. Shieh, H. F. Lo, and M. H. Sheu, “A systematic approach for parallel CRC computation,” Journal of Information Science and Engineering, Vol. 17, pp. 445-461, May 2001.
[5] J.H. Derby, “High-speed CRC computation using state-space transformations,” in Proc. Global Telecommunications Conference, Vol.1, pp. 166 -170, Nov. 2001.
[6] T. V. Ramabadran and S. S. Gaitonde, "A tutorial on CRC computations," IEEE Micro, Vol. 8, No. 4, pp. 62-75, 1988.
[7] T. Henriksson, H. Eriksson, U. Nordqvist, P. Larsson-Edefors, and D. Liu, “VLSI implementation of CRC-32 for 10 Gigabit Ethernet,” in Proc. International Conference on Electronics, Circuits and Systems, Vol. 3, pp. 1215 -1218, Sep. 2001.
[8] F. Monteiro, A. Dandache, A. M'Sir, and B. Lepley, “A polynomial division pipelined architecture for CRC error detecting codes,” in Proc. 13th International Conference on Microelectronics, pp. 133-136, Oct. 2001.
[9] G. Campobello, G. Patane, and M. Russo, “Parallel CRC realization,” IEEE Transactions on Computers, Vol.52, pp. 1312 -1319, Oct. 2003.
[10] R. J. Glaise and X. Jacquart, "Fast CRC calculation," in Proc. IEEE International Conference on Computer Design, pp. 602-605, 1993.
[11] R. F. Hobson and K. L. Cheung, "A high-performance CMOS 32-bit parallel CRC engine," IEEE Journal of Solid-State Circuits, Vol. 34, No. 2, pp. 233-235, 1999.
[12] A. Perez, "Byte-wise CRC calculation," IEEE Micro, Vol. 3, No. 3, pp. 40-50, 1983.
[13] J. H. Derby, "Parallel encoders for cyclic codes using state-space transformations," to be submitted to IEEE Trans. communication.