簡易檢索 / 詳目顯示

研究生: 王冠智
Wang, Kuan-Chih
論文名稱: 速度及土砂濃度分布對剪力流與底床侵蝕影響之研究
The Impacts of Velocity and Sediment Concentration Profiles on The Behavior of Shear Flow over Erodible Bottom
指導教授: 戴義欽
Y.C.Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 可侵蝕底床地形座標系統堰塞湖潰壩土石流
外文關鍵詞: erodible bed, unified coordinate, debris flow, barrier lake, shear flow
相關次數: 點閱:125下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當地震或是豪雨發生時,可能會伴隨著崩塌,而崩落的土石會阻塞住河道形成堰塞湖,在堰塞湖潰壩的過程中,底床位置會因為侵蝕堆積的關係產生劇烈的變化。本文將流體分成清水層、水砂混合層及可侵蝕底床層,其中我們將水砂混合層視為一剪力層,其濃度與底床並不相同,且本文將混合層與底床層的交界處視為一非物質奇異面,因此我們可以利用質量守恆以及動量守恆的不連續關係,並且配合邊界條件加上混合層底部的滑移速度做深度積分,來推導控制方程式,並且將侵蝕及堆積分開處理,再去觀察這些改變對流體的運移距離、流體厚度及侵蝕堆積率的影響。由於因為底床地形的曲率變化較大,故本文使用地形座標系統(Tai and Kuo, 2008;Tai et al. 2012)來描述流體在可侵蝕底床上的流動行為,而數值方法則使用具有shock-capturing特性的Non-Oscillatroy-Central(NOC) Scheme來模擬當潰壩發生時可侵蝕底床的變化,並且討論不同底部滑移速度和不同流場架構下對流體所造成的影響。
    最後,結合地形座標系統與本文提出的侵蝕堆積機制以及底部滑移速度後再配合不同的濃度分布假設後,模擬的結果與實驗有相當程度的吻合,更可以支持本文所提出的理論。

    When the earthquake or heavy rainfall occurs, it may induce collapse. The shattering rocks and soil would block the channel and form a natural dam. Then the barrier lake will be generated behind the natural dam. The basal surface will evolve intensely due to the erosion or deposition during the process of dam breaks. In present study, we consider the fluid as a three continuous layer, pure water, mixture transport, erodible bed layer. And we regard the mixture layer as a shear layer; its concentration is different with bed layer. The surface between the mixture layer and erodible bed is a non-material singular surface, so we can use the mass and momentum jump condition, which the bottom of mixture layer has a sliding velocity and depth-integrated to derive the government equation.
    As the erosion and deposition have distinct mechanisms, we recommend that the erosion and deposition have to be treated separately. Then we can see the influence of these assumptions on the run-out zone, fluid thickness and the erosion/deposition rate.
    Owing to the basal surface evolves intensely, in this paper, we use Unified Coordinate to describe the development of dam-break shear flow on deforming basal surface. For the numerical scheme, we use a shock-capturing non-oscillatory central (NOC) scheme to simulate the variation of basal surface, and discuss the influence of fluid on different sliding velocity and fluid configure.
    Finally, we combine the Unified Coordinate, different concentration profile assumption, sliding velocity and new erosion mechanism. Our simulation had a good agreement with the experimental result, but the location of the boundary of transport layer and the bed is not precise enough, we postulate if we employ a diverse erosion equation and deposition equation, we may be able to correct this phenomenon and get a better result.

    目錄 第一章 緒論 1 1.1 研究的動機與目的 1 1.2 研究背景 2 1.2.1 潰壩形成的原因與種類 2 1.2.2 土石流的成因與介紹 5 1.3 研究方法 8 1.4 論文架構 9 第二章 文獻回顧 10 2.1 堰塞湖的成因及分類 10 2.2 土石流研究的發展 11 第三章 理論 16 3.1 流場架構 16 3.2 控制方程式 20 3.2.1 質量守恆方程式 21 3.2.2 動量守恆方程式 29 3.3 侵蝕/堆積率 32 3.4 本章整理 37 第四章 地形座標系統與數值方法 40 4.1 地形座標系統(Unified Coordinate System) 40 4.2 地形座標系統上的控制方程式 43 4.3 數值方法 45 4.3.1 NOC Scheme 46 4.3.2 移動網格 50 第五章 結果與討論 52 5.1 流場架構 52 5.1.1 不同底部滑移速度對流體及底床的影響 55 5.1.2 不同速度分布假設對流體及底床的影響 57 5.1.3 不同混合層濃度對底床層濃度的比值對流體及底床的影響 60 5.1.4 不同物理參數的影響 62 5.1.4.1 不同底床濃度對流體及底床的影響 62 5.1.4.2 不同的顆粒摩擦角對流體及底床的影響 65 5.1.4.3 不同的顆粒比重對流體及底床的影響 66 5.2 分開侵蝕與堆積的機制 68 5.2.1 修正 前後比較 68 5.2.2 不同的速度分布假設配合修正的 69 5.3 不同的濃度分布假設 72 5.3.1 濃度分布為線性與均勻的比較 72 5.3.2 速度分布為線性及拋物線 72 5.3.3 流量分析 73 5.4 理論預測與實驗比較 75 第六章 結論與建議 80 參考文獻 82

    [1] Armanini, A., Capart, H., Fraccarollo, L. and Larcher, M. (2005). “Rheological stratification in experimental free-surface flows of granular–liquid mixtures” J. Fluid Mech., 532, pp. 269-319.
    [2] Armanini, A., Fraccarollo, L. and Rosat, G. (2006). “Two-dimensional simulation of debris flows in erodible channels.” Comput. Geosci., 35, pp. 993–1006.
    [3] Bouchut, F., Mangeney-Castelnau, A., Perthame B. and Vilotte, J. P. (2003). “A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows.” C. R. Acad. Sci., 336, pp. 531–536.
    [4] Boyer, F., Guazzelli, E. and Pouliquen, O. (2011). “Unifying Suspension and Granular Rheology.” Phys. Rev. Lett., 107, 188301.
    [5] Costa, J. E. and Schuster, R. L. (1988). “The formation and failure of natural dams.” Geol. Soc. Am. Bull., 100, pp.1054-1068.
    [6] Cao, Z., Pender, G., Wallis, S. and Carling, P. (2004). “Computational Dam-Break Hydraulics over Erodible Sediment Bed.” J. Hydraul. Eng., 130, pp. 689-703.
    [7] Crosta, G. B., Imposimato, S. and Roddeman, D. (2009). “Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface.” J. Geophys. Res., VOL. 114, F03020, doi:10.1029/2008JF001186.
    [8] Capart, H. and Fraccarollo, L. (2011). “Transport layer structure in intense bed-load.” Geophys. Res. Lett, 38, L20402.
    [9] Egashira, S., Ashida, K., Yajima, H. and Takahama, J. (1989). “Constitutive Equations of Debris Flow.” Disas. Prev. Res. Inst., 32(B-2).
    [10] Egashira, S., Miyamoto, K. and Itoh, T. (1997). “Constitutive equations of debris flow and their applicability.” Debris Flow Hazards Mitigation, pp.340-349.
    [11] Egashira, S., Itoh T. and Takeuchi, H. (2001). “Transition Mechanism of Debris Flows Over Rigid Bed to Over Erodible Bed.” Phys. Chem. Earth (B), Vol. 26, No. 2, pp. 169-174.
    [12] Fraccarollo L. and Capart, H. (2002). “Riemann wave description of erosional dam- break flows.” J. Fluid Mech., 461, pp. 183-228.
    [13] Hui, W. H., Li, P. Y. and Li, Z. W. (1999). “A unified coordinate system for solving the two-dimensional Euler equations.” J. Comput. Phys., 153, pp. 596-637.
    [14] Hui, W. H. and Koudriakov, S. (2000). “The role of coordinates in the computation of discontinuities in one-dimensional flow.” Computational Fluid Dynamics Journal, 8, pp. 495-510.
    [15] Hui, W. H. (2004). “A unified coordinates approach to computational fluid dynamics.” J. Comput. Appl. Math., 163, pp. 15-28.
    [16] Hutter, K. and Joehnk, K. (2004). “Continuum Methods of Physical Modeling.” Springer Verlag.
    [17] Hui, W. H. (2007). “The Unified Coordinate System in Computational Fluid Dynamics.” Commun. Comput. Phys., 2, pp. 577-610.
    [18] Iverson, R. M. (2012). “Elementary theory of bed-sediment entrainment by debris flows and avalanches.” J. Geophys. Res., 117, F03006, doi:10.1029/2011JF002189.
    [19] Jiang, G. S. and Tadmor, E. (1998). “Nonoscillatory Central Schemes for Multidi- mensional Hyperbolic Conservation Laws.” SIAM J. Sci. Comput., 19, pp. 1892–1917.
    [20] Komatsu, T. S., Inagaki, S., Nakagawa, N. and Nasuno, S. (2001). “Creep Motion in a Granular Pile Exhibiting Steady Surface Flow.” Phys. Rev. Lett., 86,1757.
    [21] Lambe, T. W. and Whitman, R. V. (1969). “Soil Mechanics.” John Wiley, New York.
    [22] Luca, I., Hutter, K., Kuo, C. Y. and Tai, Y. C. (2009). “Two-layer models for shallow avalanche flows over arbitrary variable topography.” Int. J. Adv. Eng. Sci. Appl. Math. (AESAM), 1, pp. 99-121.
    [23] Li, M. H., Sung, R. T., Dong, J. J., Lee C. T. and Chen, C. C. (2011). “The formation and breaching of a short-lived landslide dam at Hsiaolin Village, Taiwan — Part II: Simulation of debris flow with landslide dam breach.” Engineering Geology, 123, pp. 60-71.
    [24] Pitman, E. B., Nichita, C. C., Patra, A. K., Bauer, A. C., Bursik, M. and Weber, A. (2003). “A model of granular flows over an erodible surface.” Discrete Contin. Dynam. Syst.-Series B, 3, pp. 589–599.
    [25] Ritter, A., (1892). “The propagation of water waves.” Z. Verein. Deutsch. Ing, 36, pp. 947-954.
    [26] Richard, G. L. and Gavrilyuk, S. L. (2012). “A new model of roll waves: comparison with Brock’s experiments.” J. Fluid Mech., 698, pp.374-405.
    [27] Sumer, B. M., Kozakiewicz, A., Fredsoe, J. and Deigaard, R. (1996). “Velocity and concentration profiles in sheet-flow layer of movable bed.” J. Hydraul. Eng., 122, pp. 549-558.
    [28] Stansby, P. K., Chegini A. and Barnes, T. C. (1998). “The initial stages of dam- break flow.” J. Fluid Mech., 374, pp. 407-424.
    [29] Spinewine, B. and Zech, Y. (2007). “Small-scale laboratory dam-break waves on movable beds”. J. Hydraul. Res., 45, pp. 73-86.
    [30] Spinewine, B. and Capart, H. (2013). “Intense bed-load due to a sudden dam- break.” J. Fluid Mech., 731, pp. 579-614.
    [31] Takahashi, T. (1991). “Debris flow.” Balkema. Rotterdam, pp. 1-165.
    [32] Tseng, M. H. and Chu, C. R. (2000). “The simulation of dam-break flows by an improved predictor–corrector TVD scheme.” Adv. Water. Resour., 23 pp.637-643.
    [33] Tai, Y. C., Noelle, S., Gray J.M.N.T. and Hutter, K. (2002). “Shock-Capturing and Front Tracking Methods for Granular Avalanches.” J. Comput. Phys., 175, pp. 269–301.
    [34] Tai, Y. C., Noelle S. and Gray, J.M.N.T. (2005). “An Application of Non oscilla- tory Central (NOC) Scheme to Shock Formation in Rapid Granular Flows.” The 6th Asian Computational fluid dynamics Conference.
    [35] Tai, Y. C. and Kuo, C. Y. (2008) “A New Model of Granular Flows over General Topography with Erosion and Deposition.” Acta Mech., 199, pp.71-96.
    [36] Tai, Y. C. and Kuo, C. Y. (2012). “Modelling shallow debris flows of the Coulomb mixture type over temporally varying topography.” Nat. Hazards Earth Syst. Sci., 12, pp. 269– 280.
    [37] Tai, Y. C., Kuo, C. Y. and Hui, W. H. (2012). “An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature.” Geophys. Astrophys. Fluid. Dyn., 106, pp. 596-629.
    [38] Yang, C. P. (2002). “Modeling of shear behavior of saturated OTTAWA sands with back-propagation networks.” 中國土木水利工程學刊, 14, pp. 243-262.
    [39] Yee, H. C. (1987). “Construction of explicit and implicit symmetric TVD schemes and their applications.” J. Comput. Phys., 68, pp. 151-179.
    [40] 詹錢登 (2000). ,「土石流概論」,台北市 : 科技圖書股份有限公司。
    [41] 劉哲欣、吳亭燁、陳聯光、林聖琪、林又青、陳樹群、周憲德 (2011) “台灣地區重大岩體滑動案例之土方量分析.” 中華水土保持學報, 42, pp. 150-159.
    [42] 林書達 (2012 ).“以實驗探討溢流型潰壩的滲流與侵蝕.” 國立成功大學水利及海洋工程學系碩士論文.
    [43] 沈家齊 (2014).”土石流理論流速濃度與修正係數之探討” 國立成功大學水利及海洋工程學系碩士論文.

    下載圖示 校內:2017-12-24公開
    校外:2017-12-24公開
    QR CODE