簡易檢索 / 詳目顯示

研究生: 陳奕光
Chen, Yi-Kuang
論文名稱: 480 MHz 的時脈產生器與資料回復電路的設計與實作
Design and Implementation of a 480 MHz Clock Generator and Data Recovery
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 72
中文關鍵詞: 資料回復時脈產生器延遲鎖相迴路鎖相迴路
外文關鍵詞: delay-locked loop, DLL, phase-locked loop, data recovery, PLL, clock generator
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在設計一個操作在480百萬赫茲,可調頻寬的時脈產生器與根據延遲鎖相迴路為基礎的資料回復系統。本系統可適用在mesochronous的連接系統中。

    現今有許多高速的輸入輸出系統被整合在單一晶片上,其打線腳的數目與功率消秏的預算很緊。數位電路傳導過來的切換雜訊亦變成相當嚴重的麻煩。在這次的實作裡,時脈產生器要對這些雜訊有免疫,並同時保有低時脈抖動的特點。時脈產生器採用可調頻寬的技術,用來幫助在不同的製程變動下還能維持效能。此外,簡單但有效的雜訊消除電路被設計,以減小時脈產生器中壓控振盪器之控制電壓因為供應電壓雜訊而造成的干擾。

    被用來產生多個相位時脈的延遲鎖相迴路會有起始與鎖錯相位的問題。但用來實作資料回復的延遲鎖相迴路只需要解決前一個問題。利用壓控振盪器中每一級延遲時間只有壓控延遲線的一半這個事實,一個電流訊號從壓控振盪器中被鏡射到壓控延遲線裡,藉此來粗調壓控延遲線並解決起始問題。同時,壓控延遲線可被設計為擁有較小的鎖定範圍與增益。因此較小的電容即可達到足夠的頻寬以濾掉輸入的雜訊,因此許多的面積被節省了下來。

    這晶片是以台積電0.35毫米2P4M、互補金氧半混合信號製程實作。總共佔用了 325x270平方毫米的面積,並在3.3伏的供應電壓下消秏了約30微瓦的功率。

    The goal of this thesis is to design an adaptive-bandwidth clock generator and a DLL (Delayed Locked Loop)-based data recovery system running at 480 MHz. This system is suitable to apply to the mesochronous interconnection.

    Nowadays many high-speed I/Os are integrated into a single chip, the wire count, power budget of a system can be significantly tight. The switching noise coupled from digital blocks to analog ones also has become a serious problem. In this work, the clock generator is designed to be immune to such noise while maintaining the low-jitter characteristic. The adaptive-bandwidth technique is adopted to help the clock generator to keep its performance under different process variation. Besides, simple while effective noise-canceling circuits are designed to reduce the noise coupling from the supply voltage to the voltage controlled oscillator (VCO) of the clock generator.

    The DLLs designed for multi-phase clock generator have the start-up and false-lock problems. However, the DLL implemented in the data recovery only has to resole the prior one. Taking advantages of the fact that the delayed time of the delay cells in the VCO is half of those in DLL, a coarsely-tuned current, is mirrored from VCO to DLL, elegantly resolves the start-up problem without any further reset circuits. Meanwhile, the voltage controlled delayed line (VCDL) can be designed with a smaller operating range and smaller gain. Large chip area is saved due to the smaller capacitor is sufficient to achieve the same bandwidth to filter out the input noise.

    The chip is implemented in a TSMC 0.35 um 2P4M CMOS mixed-mode technology. It occupies 325x270 mm2 and consumes about 30mW at 3.3 V power supply.

    1 Introduction ………………………………………………………………… 1 1.1 Motivation ………………………………………………………………… 1 1.2 Background ………………………………………………………………… 1 1.3 Thesis Organization …………………………………………………… 2 2 Review of the CDR …………………………………………………………… 3 2.1 Data Transmission in Digital System ………………………………… 3 2.1.1 Mesocronous Interconnect …………………………………………… 4 2.1.2 Heterochronous and Plesiochronous Interconnect ……………… 5 2.1.3 NRZ Data Transmission ……………………………………………… 5 2.2 Clock Recovery Circuits ………………………………………………… 6 2.2.1 PLL-based Clock Recovery …………………………………………… 6 2.2.2 DLL-based Clock Recovery …………………………………………… 9 2.2.3 Gated Ring Oscillator CDR ………………………………………… 12 2.2.4 Phase Selection & Phase Feedback CDR …………………………… 13 2.2.5 Non-traditional PLL-based Clock Recovery ……………………… 14 2.2.6 Oversampling …………………………………………………………… 15 2.3 Data Recovery Circuits ………………………………………………… 15 2.3.1 Oversampling …………………………………………………………… 15 2.3.2 Phase Rotator and DLL with Infinite Delay Range ……………… 17 2.4 Summary of Recent Works ………………………………………………… 18 3 System Design and Circuits Implementation …………………………… 19 3.1 DLL-based Data Recovery ………………………………………………… 19 3.2 Clock Generator - Adaptive-bandwidth PLL …………………………… 20 3.2.1 System Design ………………………………………………………… 20 3.2.2 Issues of Stability …………………………………………………… 23 3.2.3 Adaptive-bandwidth PLLs …………………………………………… 28 3.2.4 Analysis of the Settling Time ……………………………………… 30 3.2.5 Overview of the Clock Generator ………………………………… 34 3.2.6 Design of the Voltage-controlled Oscillator (VCO) …………… 41 3.2.7 Design of the Charge Pump and the Class AB Driver …………… 44 3.2.8 Frequency Divider …………………………………………………… 47 3.2.9 Low-to-high Swing Converter and Duty Cycle Correction ……… 49 3.3 Phase Aligner – Wide-range DLL ……………………………………… 51 3.3.1 Lock-range of the Voltage-controlled Delay Line ……………… 51 3.3.2 Methods to Coarsely Tune VCDL ……………………………………… 53 3.3.3 Jitter Amplification ………………………………………………… 54 3.3.4 Circuits implementation …………………………………………… 55 3.4 Simulated Results of the CDR ………………………………………… 56 4. Experimental Results ……………………………………………………… 60 4.1 Floor Plan and Layout Considerations ………………………………… 60 4.2 Measurement Setup ………………………………………………………… 62 4.3 Measurement Results ……………………………………………………… 64 4.4 Summary ……………………………………………………………………… 65 5. Conclusion …………………………………………………………………… 67 6. Bibliography ………………………………………………………………… 69

    [01] B. Razavi, “Monolithic Phase-Locked Loops and Clock Recovery Circuits,”
    IEEE Press, 2003

    [02] D. G. Messerschmitts, “Synchronization in digital system design,”
    IEEE J. Selected Areas in Communication, vol.8 pp.1404-1419, Oct.1990.

    [03] B. Razavi, “Challenges in the design of high-speed clock and data recovery circuits,”
    IEEE Communications Magazine, pp. 94-101, Aug. 2002

    [04] C. R. Hogge, “A self correcting clock recovery circuit.,”
    IEEE J. Lightwave Technology, vol.3, pp.1312-1314, Dec.1985.

    [05] D. Messerschmitt, “Frequency Detectors for PLL Acquisition in Timing and Carrier Recovery,”
    IEEE T. on Communication, vol. 27, pp.1288-1295, Sep. 1979

    [06] B. Razavi, "Design of Integrated circuits for Optical Communications,"
    McGraw Hill, 2003

    [07] T.Lee, John F. Bulzacchelli, “A 155-MHz clock recovery delay and phase-locked loop,”
    IEEE J. Solid State Circuits, vol.27 pp.1736-1746, Dec.1992.

    [08] US Patent # 5,036,298, Jul. 1991

    [09] D. Dalton, et al., “A 12.5 Mb/s to 2.7 Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback,”
    ISSCC Dig. Tech. Papers, pp.230-231, Feb. 2005.

    [10] Kasin Vichienchom, “A Multi-gigabit CMOS Transceiver with 2x Oversampling Linear Phase Detector,”
    PhD Thesis, 2003

    [11] X. Maillard, F.Devisch, M. Kuijk, ”A 900-Mb/s CMOS data recovery DLL using half-frequency clock,”
    IEEE J. Solid-State Circuits, Vol. 37, pp.711 – 715, Jun. 2002.

    [12] M. Banu, “A 660 Mb/s CMOS clock recovery circuit with instantaneous locking for NRZ data and burst-mode transmission,”
    ISSCC Dig. Tech. Papers, pp.102-103, Feb 1993.

    [13] M. Nogawa, K. Nishimura, et al. “A 10 Gb/s burst-mode CDR IC in 0.13 um CMOS,”
    ISSCC Dig. Tech. Papers, pp.228 -229, Feb 2005.

    [14] J. Sonntag and R. Leonowich, “A monolithic CMOS 10MHz DPLL for burst-mode data retiming,”
    ISSCC Dig. Tech. Papers, pp.194-195, Feb. 1990.

    [15] P. Larsson, “A 2–1600-MHz CMOS clock recovery PLL with low-Vdd capability,”
    IEEE J. Solid-State Circuits, vol. 34, pp. 1951-1960, Dec. 1999.

    [16] K. J. Wong, M. Mansuri, H. Hatamkhani and CK.K. Yang, “A 27-mW 3.6-Gb/s I/O Transceiver,”
    IEEE J. Solid-State Circuits, vol. 39, pp. 602-612, Apr. 2004.

    [17] K. Lee, et al., “A CMOS serial link for fully duplexed data communication,”
    IEEE J. Solid State Circuits, vol.30 pp.353-364, April 1995.

    [18] US Patent # 5,802,103, Sep. 1998

    [19] C.K. Yang and M. Horowitz, “A 0.8-_m CMOS 2.5 Gb/s oversampling receiver and transmitter for serial links,”
    IEEE J. Solid State Circuits, vol.31, pp.2015-2023, Dec. 1996.

    [20] C.K. Yang, et al., “A 0.5_m CMOS 4.0 Gbit/s serial link transceiver with data recovery using oversampling,”
    IEEE J. Solid State Circuits, vol.33, pp.713-721, May 1998.


    [21] S. Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked loop,”
    IEEE J. Solid State Circuits, vol.32 pp.1683-1692, Nov.1997

    [22] Y. J. Jung, S. W. Lee, D. Shim, W. Kim, and C. Kim, “A Dual-loop Delay-locked loop using multiple voltage-controlled delay lines”
    IEEE J. Solid-State Circuits, vol.36, pp.784-791, May 2001

    [23] Rainer Kreienkamp, et. al., "A 10-Gb/s CMOS Clock and Data Recovery Circuit With an Analog Phase Interpolator,"
    IEEE J. Solid-State Circuits, vol. 40, pp. 736 – 743, Mar. 2005

    [24] R.E Best, “Phase-locked Loops,” 3rd ed. McGraw Hill, 1999

    [25] M. Mansuri, C.-K.K. Yang, “A low-power adaptive bandwidth PLL and clock buffer with supply-noise compensation,”
    IEEE J. Solid-State Circuits, vol. 38, pp. 1804 – 1812, Nov. 2003

    [26] Design, simulation, and bandwidth extension methods for fractional-N frequency synthesizers,
    IEEE SSCS Taipei Chapter Short Course, Mar. 2005

    [27] B. Ginsburg, “A 1.6-3.2 GHz, High Phase Accuracy Quadrature Phase Locked Looped Loop,”
    Thesis, 2003

    [28] F. M. Gardner, “Phaselock Techniques,”
    2nd ed. New York: Wiley, 1979.

    [29] S. Sidiropoulos, et. a., “Adaptive bandwidth DLLs and PLLs using regulated supply CMOS buffers,”
    IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 124-127, Jun. 2000.

    [30] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,”
    IEEE J. Solid-State Circuits, vol. 31, pp. 1723-1732, Nov. 1996.

    [31] Jaeha Kim, M.A. Horowitz, Gu-Yeon Wei, “Design of CMOS adaptive-bandwidth PLL/DLLs: a general approach,“
    IEEE Transactions on Circuits and Systems II, vol. 50, pp.860 – 869, Nov. 2003

    [32] J.G. Maneatis, et. al., “Self-biased high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL,”
    IEEE J. Solid-State Circuits, vol. 38, pp.1795 - 1803, Nov. 2003

    [33] W.T. Fan, “A PLL-based clock generator with digital frequency tracking scheme,”
    M.S Thesis, 2004

    [34] R. Farjad-Rad, et al., “A low-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated digital chips,”
    IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1804-1812, Dec. 2002

    [35] M. Mansuri, et al., “Fast Frequency Acquisition Phase-Frequency Detectors for GSa/s Phase-Locked Loops,”
    IEEE J. Solid-State Circuits, vol. 37, pp. 1331-1334, Oct. 2002

    [36] S-J Lee, et al., “A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme,”
    IEEE J. Solid-State Circuits, vol. 32, pp. 289-291, Feb. 1997

    [37] H.T. Ahn, and D. J. Allstot, “A low-jitter CMOS PLL for UltraSPARC Microprocessor Applications,”
    IEEE J. Solid-State Circuits, Vol 35, pp.450-454, Mar, 2000

    [38] Beomsup Kim, et al., “A low-noise fast-lock phase-locked loop with adaptive bandwidth control,”
    IEEE J. Solid-State Circuits, vol. 35, pp. 807-815, Jun. 2002

    [39] Y. Moon, et al., “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance,”
    IEEE J. Solid-State Circuits, vol. 35, pp. 377-384, Mar. 2000

    [40] M. J. Edward, et al., “Jitter transfer characteristics of delay-locked loops – theories and design techniques,”
    IEEE J. Solid-State Circuits, vol. 38, pp. 614-621, Apr. 2003

    下載圖示 校內:立即公開
    校外:2005-08-04公開
    QR CODE