簡易檢索 / 詳目顯示

研究生: 謝誠訓
Hsieh, Cheng-Hsun
論文名稱: K8玻璃陶瓷與銅鋁合金內電極共燒之研究
Investigation on K8 Glass-Ceramic Co-Fired with Copper-Aluminum Inner Electrode
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 銅鋁合金內電極厚膜技術熱膨脹係數低溫共燒陶瓷
外文關鍵詞: Copper-Aluminum Alloy, Inner Electrode, Thick Film Technology, Thermal Expansion Coefficient, Low-Temperature Co-fired Ceramics (LTCC)
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早期,LTCC元件中所使用的銀電極是在空氣下燒結,而銅電極需要在氮氣下進行燒結。這是因為氮氣可以提供一個無氧的環境,從而防止電極表面的氧化,保證燒結後的電極具有良好的導電性能。此外,氮氣還可以減少電極表面的殘留碳元素,從而減少對元件性能的負面影響。在使用銀電極和銅電極的生產過程中,氮氣的使用是一個重要的工藝措施,可以提高元件的品質和可靠性。
    隨著金屬導電膏的進化演變,現在市面上大多使用銅、銀等作為導電粉末,可因為銀本身過於昂貴,而金屬銅則需要燒結在還原氣體下,而鋁作為導電性佳的材料之一,但因為鋁即使在真空的環境下也會生成保護性氧化層,這會抑制鋁顆粒之間的接觸導致在厚膜應用上受到限制。
    因此,希望結合銅和鋁的特性,讓此兩種金屬形成合金,使銅鋁合金不容易與氧形成氧化物,能夠拉回空氣下燒結,因為使用空氣進行燒結不需要特殊氣體或氣氛控制設備,相對於其他氣氛控制燒結,成本相對較低。
    本文研究了低溫共燒陶瓷(LTCC)中使用不同材料的電極(銅鋁合金電極、銅電極、銀電極)對元件性能的影響。實驗結果顯示,使用銅鋁合金電極的元件具有較低的溫度係數和較小的溫度漂移,這可以增加元件的穩定性和可靠性。相比之下,使用銀電極的元件具有較高的溫度係數和較大的溫度漂移,而使用銅電極的元件具有較差的導電性能和較差的耐腐蝕性能。因此,使用銅鋁合金電極是一種可行的替代方案,可以提高元件的性能並降低生產成本。本研究為LTCC元件的設計和生產提供了重要參考和指導。
    此研究主要分為三個部分,第一部分是先藉由DTG與TMA的分析決定LTCC元件適合在什麼樣的溫度之下進行燒結,DTG分析可以研究燒結過程當中的反應跟變化,幫助優化燒結條件和提高材料的性能,而TMA可以用於研究材料的熱穩定性和燒結收縮率的性能,幫助優化材料的配方和製程,再來放進燒結爐會先設定不同的燒結階段,這主要是考慮LTCC元件的材料、電極材料、擴散問題、電極是否會氧化問題等等,應該適用於哪一個不同的燒結階段。第二部分會使用SEM與EDS來分析陶瓷材料與電極材料的本身燒結後狀況,這可以幫助我們在後續做一系列電性量測時的一個很好的輔助工具。最後,第三部分在電性量測樣品時就可得知樣品的一個電性結果是否符合前面燒結的步驟有無幫助。
    關鍵字 : 銅鋁合金、內電極、厚膜技術、熱膨脹係數、低溫共燒陶瓷(LTCC)

    In the past, the silver electrodes used in LTCC components were sintered in air, while copper electrodes needed to be sintered under nitrogen. This is because nitrogen provides an oxygen-free environment, thereby preventing the oxidation of the electrode surface and ensuring good conductivity of the electrode after sintering. In addition, nitrogen can also reduce the residual carbon elements on the electrode surface, thereby minimizing the negative impact on component performance. In the production process of using silver electrodes and copper electrodes, the use of nitrogen is an important process measure that can improve the quality and reliability of the components. This paper studied the effect of using different electrode materials (copper-aluminum alloy electrodes, copper electrodes, silver electrodes) in Low Temperature Co-fired Ceramics (LTCC) on component performance. The experimental results showed that components using copper-aluminum alloy electrodes have a lower temperature coefficient and smaller temperature drift, which can enhance the stability and reliability of the components. In contrast, components using silver electrodes have a higher temperature coefficient and larger temperature drift, while components using copper electrodes have poorer conductivity and corrosion resistance. Therefore, using copper-aluminum alloy electrodes is a viable alternative, which can enhance component performance and reduce production costs. This study provides important reference and guidance for the design and production of LTCC components. This research is divided into three parts. The first part is to determine the appropriate sintering temperature for LTCC components through DTG and TMA analysis. DTG analysis can study the reactions and changes during the sintering process, helping to optimize sintering conditions and improve material performance. TMA can be used to study the thermal stability and sintering shrinkage performance of materials, helping to optimize material formulas and processes. In the second part, SEM and EDS are used to analyze the condition of ceramic material and electrode material after sintering. This can provide us with a good auxiliary tool in subsequent electrical measurement series. Finally, in the third part, when measuring the electrical properties of the sample, we can find out whether the electrical results of the sample are consistent with the sintering steps.
    Keywords: Copper-Aluminum Alloy, Inner Electrode, Thick Film Technology, Thermal Expansion Coefficient, Low-Temperature Co-fired Ceramics (LTCC)

    摘要 i 致謝 iii EXTENDED ABSTRACT iv 目錄 xxiv 圖目錄 xxvii 表目錄 xxx 第一章 緒論 1 1.1 研究背景 1 1.2 實驗動機 2 1.3 章節概述 3 第二章 文獻回顧 4 2.1 銅鋁合金 4 2.2 微波介電性質之原理 6 2.2.1介電原理 6 2.2.2電容理論 10 2.3 積層陶瓷 12 2.3.1積層陶瓷構造 12 2.3.2 低溫共燒陶瓷 13 2.3.3卑金屬電極與貴金屬電極 14 2.4 燒結理論 17 2.4.1固相燒結(Solid Phase Sintering) 17 2.4.2液相燒結(Liquid Phase Sintering) 17 第三章 實驗方式和設備分析 19 3.1 實驗架構 19 3.2 薄帶成型(TAPE CASTING)技術 20 3.2.1漿料配置 21 3.2.2球磨 22 3.2.3刮刀成型 24 3.3 積層陶瓷電容製程 25 3.3.1網版印刷 25 3.3.2 堆疊 26 3.3.3 熱均水壓 27 3.3.4 切割 28 3.3.5 排膠(binder burn out,BBO)與燒結(Sintering) 29 3.3.6 箱型高溫爐 31 3.3.7 沾銀端電極(Ag Dipping)與熱處理(Curring) 32 3.4 量測方法與分析儀器 33 3.4.1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 33 3.4.2差熱分析-熱重分析(Differential Thermal Analysis Thermogravimetry,DTG) 34 3.4.3熱機械分析(Thermomechanical Analysis,TMA) 35 3.4.4收縮率(Shrinkage)計算 36 3.4.5阿基米德(Archimedes)密度測量 36 3.4.6 LCR阻抗分析儀 37 3.4.7 背向散射電子繞射技術(Electron Back Scatter Diffraction,EBSD) 38 3.4.8 光學顯微鏡(Optical Microscope,OM) 39 第四章 實驗方法與討論 40 4.1 收縮率分析內電極與陶瓷體之結果 40 4.1.1 20%銅鋁內電極 40 4.1.2 30%銅鋁內電極 42 4.1.3 40%銅鋁內電極 45 4.2 使用DTG分析陶瓷與內電極之重量變化與是否有形成銅鋁合金相 48 4.2.1電極是否在空氣下燒結有氧化之情形 48 4.2.2銅鋁電極在LTCC中是否有形成合金 49 4.2.3二段燒結辨別不同銅鋁合金形成之溫度 53 4.3 透過DTG和TMA分析來調整燒結階段 56 4.4 燒結不同的燒結步驟分析出最佳的燒結條件 59 4.4.1三階段燒結 59 4.4.2四階段燒結 62 4.4.3五階段燒結 65 4.5 電性量測分析之結果 69 4.5.1三階段燒結 69 4.5.2四階段燒結 69 4.5.3五階段燒結 70 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 72 參考文獻 73

    [1]Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology. Springer Science & Business Media, 2005.
    [2]H. Naguib and B. MacLaurin, "Silver migration and the reliability of Pd/Ag conductors in thick-film dielectric crossover structures," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 2, no. 2, pp. 196-207, 1979.
    [3]G. B. Schaffer, J.-Y. Yao, S. Bonner, E. Crossin, S. J. Pas, and A. J. Hill, "The effect of tin and nitrogen on liquid phase sintering of Al–Cu–Mg–Si alloys," Acta Materialia, vol. 56, no. 11, pp. 2615-2624, 2008.
    [4]J. Galvele and S. de De Micheli, "Mechanism of intergranular corrosion of Al-Cu alloys," Corrosion Science, vol. 10, no. 11, pp. 795-807, 1970.
    [5]J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, and T. Nomura, "Reliability of multilayer ceramic capacitors with nickel electrodes," Journal of Power Sources, vol. 60, no. 2, pp. 199-203, 1996.
    [6]Y. Wang, L. Li, J. Qi, Z. Ma, J. Cao, and Z. Gui, "Nickel diffusion in base-metal-electrode MLCCs," Materials Science and Engineering: B, vol. 99, no. 1-3, pp. 378-381, 2003.
    [7]Y.-I. Shin, K.-M. Kang, Y.-G. Jung, J.-G. Yeo, S.-G. Lee, and U. Paik, "Internal stresses in BaTiO3/Ni MLCCs," Journal of the European Ceramic Society, vol. 23, no. 9, pp. 1427-1434, 2003.
    [8]Z. Gui, Y. Wang, and L. Li, "Study on the interdiffusion in base-metal-electrode MLCCs," Ceramics international, vol. 30, no. 7, pp. 1275-1278, 2004.
    [9]T. Hatano et al., "Synthesis and characterization of BaTiO3-coated Ni particles," Journal of the European Ceramic Society, vol. 24, no. 2, pp. 507-510, 2004.
    [10] L. Fratila-Apachitei, I. De Graeve, I. Apachitei, H. Terryn, and J. Duszczyk, "Electrode temperature evolution during anodic oxidation of AlSi (Cu) alloys studied in the wall-jet reactor," Surface and Coatings Technology, vol. 200, no. 18-19, pp. 5343-5353, 2006.
    [11] M. Y. Murashkin, I. Sabirov, X. Sauvage, and R. Valiev, "Nanostructured Al and Cu alloys with superior strength and electrical conductivity," Journal of materials science, vol. 51, no. 1, pp. 33-49, 2016.
    [12] L. Jiang, B. Rouxel, T. Langan, and T. Dorin, "Coupled segregation mechanisms of Sc, Zr and Mn at θ′ interfaces enhances the strength and thermal stability of Al-Cu alloys," Acta Materialia, vol. 206, p. 116634, 2021.
    [13] A. S. Román, C. M. Méndez, C. A. Gervasi, R. B. Rebak, and A. E. Ares, "Corrosion Resistance of Aluminum-Copper Alloys with Different Grain Structures," Journal of Materials Engineering and Performance, vol. 30, pp. 131-144, 2021.
    [14] K. Kowal, J. DeLuccia, J. Josefowicz, C. Laird, Farrington, and GC, "In situ atomic force microscopy observations of the corrosion behavior of aluminum‐copper alloys," Journal of The Electrochemical Society, vol. 143, no. 8, p. 2471, 1996.
    [15] V. S. Sarma, K. Sivaprasad, D. Sturm, and M. Heilmaier, "Microstructure and mechanical properties of ultra fine grained Cu–Zn and Cu–Al alloys produced by cryorolling and annealing," Materials Science and Engineering: A, vol. 489, no. 1-2, pp. 253-258, 2008.
    [16] X. An et al., "The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion," Scripta Materialia, vol. 64, no. 10, pp. 954-957, 2011.
    [17] M. Borens et al., "Transparent and Tinted Glass Ceramics for Household Appliances," Low Thermal Expansion Glass Ceramics, pp. 51-106, 1995// 1995, doi: 10.1007/978-3-662-03083-7_3.
    [18] A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications. John Wiley & Sons, 2003.
    [19] M. J. Pan and C. A. Randall, "A brief introduction to ceramic capacitors," IEEE Electrical Insulation Magazine, vol. 26, no. 3, pp. 44-50, 2010, doi: 10.1109/MEI.2010.5482787.
    [20] J.-O. Hong, S.-H. Kim, and K.-H. Hur, "Development history and trend of high-capacitance multi-layer ceramic capacitor in Korea," Journal of the Korean Ceramic Society, vol. 46, no. 2, pp. 161-169, 2009.
    [21] K. B. Shim, N. T. Cho, and S. W. Lee, "Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications," Journal of Materials Science, vol. 35, no. 4, pp. 813-820, 2000/02/01 2000, doi: 10.1023/A:1004769501698.
    [22] J. Isard, "A study of the migration loss in glass and a generalized method of calculating the rise of dielectric loss with temperature," Proceedings of the IEE-Part B: Electronic and Communication Engineering, vol. 109, no. 22S, pp. 440-447, 1962.
    [23] A. R. von Hippel and S. Morgan, "Dielectric materials and applications," Journal of The Electrochemical Society, vol. 102, no. 3, p. 68Ca, 1955.
    [24] D. Kinser, "Electrical Conduction in Glass and Glass Ceramics," Physics of Electronic Ceramics, Part A. Edited by LL Hench and DB Dove. Marcel Dekker, New York, pp. 523-37, 1971.
    [25] 李正中 and 林鵬, "BaO-La2O3-4.7 TiO2 微波陶瓷製程及性質研究," 1997.
    [26] S. F. Wang, J. P. Dougherty, W. Huebner, and J. G. Pepin, "Silver‐palladium thick‐film conductors," Journal of the American Ceramic Society, vol. 77, no. 12, pp. 3051-3072, 1994.
    [27] J. G. Pepin, W. Borland, P. O'Callaghan, and R. J. Young, "Electrode‐based causes of delaminations in multilayer ceramic capacitors," Journal of the American Ceramic Society, vol. 72, no. 12, pp. 2287-2291, 1989.
    [28] T. Garino and M. Rodriguez, "Behavior of silver and palladium mixtures during heating," Journal of the American Ceramic Society, vol. 83, no. 11, pp. 2709-2714, 2000.
    [29] H. Kishi, Y. Mizuno, and H. Chazono, "Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives," Japanese journal of applied physics, vol. 42, no. 1R, p. 1, 2003.
    [30] R. M. German, Sintering theory and practice. 1996.
    [31] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, pp. 1-39, 2009.

    無法下載圖示 校內:2028-08-15公開
    校外:2028-08-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE