| 研究生: |
林冠文 Lin, Kuan-Wen |
|---|---|
| 論文名稱: |
ZnS/CdS/TiO2光陽極之製備及其在光電化學產氫之應用 Preparation of ZnS/CdS/TiO2 Photoanodes and Application in Photoelectrochemical Hydrogen Production |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 硫化鋅 、硫化鎘 、二氧化鈦 、電沉積 、光電化學 、產氫 |
| 外文關鍵詞: | zinc sulfide, cadmium sulfide, titanium dioxide, electrodeposition, photoelectrochemical, hydrogen generation |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以氯化鋅及硫代硫酸鈉為前驅鹽,利用脈衝式電沉積法沉積ZnS於CdS/TiO2基材上來製備ZnS/CdS/TiO2光陽極,文中探討電沉積變因對所得光陽極組成及結構之影響,並進一步探討光陽極之光電化學活性及產氫速率之影響。
在電沉積ZnS實驗中,吾人改變施加電壓、電解液組成、pH值、沉積電量、溫度以及煅燒溫度來探討,並利用XRD、SEM、TEM、XPS及UV等儀器來進行特性分析。分析光陽極之活性時,利用Xe燈源(100 mW/cm2)照射光陽極,並以0.25 M Na2S、0.35 M Na2SO3水溶液作為電解液,進行光電化學反應,以評估各光陽極之光活性。最後利用雙槽式反應器進行產氫實驗,探討陽極攪拌速率及鹼液濃度對產氫速率之影響。
實驗結果發現,電沉積變因對ZnS之析出量、粒徑大小、缺陷及表面電荷影響甚鉅,進而影響光陽極之光活性。最適之製備條件:還原電壓為-0.8V(vs Ag/AgCl)、電解液組成為0.03 M ZnCl2、0.3 M Na2S2O3水溶液、pH值為3、沉積溫度25℃、施加1.0庫倫電量、鍛燒溫度350℃。此條件下所得光陽極光活性為最佳。
由產氫實驗中發現,最適攪拌轉速為300rpm、且最適之陽極液組成為1 M NaOH + 0.25 M Na2S + 0.35 M Na2SO3水溶液。此時光電流可達8.17 mA-cm-2,其對應之光轉換效率為3.56%,產氫速率為87.98 mol-cm-2-h-1,並且速率可長時間保持穩定;相較於為沉積ZnS之CdS/TiO2光陽極而言,光活性提昇,產氫速率亦增加,且可減少光陽極之光腐蝕性,而延長其使用壽命。
In this work, ZnS/CdS/TiO2 photoanodes were prepared by pulse electrodeposition from zinc chloride and sodium thiosulfate solutions. The influence of the electrodeposition condition on the composition and structure of photoanode was investgated. Furthermore, the photoelectrochemical activities and hydrogen production rates of the photoanodes were also studied.
For the study of ZnS electrodeposition, the preparation conditions including applied voltage, electrolyte composition, pH, input electricity, deposition temperature, and calcination temperature were investigated. The characterizations of photoanodes were investigated by means of XRD, SEM, TEM, XPS and UV techniques. In order to measure the photoactivity of prepared photoanode, a photoelectrochemical (PEC) cell with an electrolyte of 0.25 M Na2S and 0.35 M Na2SO3 were used under illumination by Xe lamp (100 mW/cm2). Moreover, the hydrogen generation experiment was carried out in a two-compartment PEC reactor. The concentration of alkaline electrolyte and the stirring rate in the anode compartment were investigated as well.
The results showed that deposition amount, particle size, defects, and surface charges of ZnS layer were strongly influenced by the deposition conditions, which would in advance manipulate the photoactivity of photoanode. It was found that the optimal deposition conditions were: reductive voltage of -0.8 V (vs. Ag/AgCl), the electrolyte of 0.03 M ZnCl2, 0.3 M Na2S2O3, pH3, input reductive electricity of 1 C, deposition temperature of 25 ℃ and calcination temperature of 300 ℃.
From the results of hydrogen genetation experiment, it revealed that the hydrogen generation condition was optimized at rotating speed of 300 rpm and the electrolyte of 1 M NaOH, 0.35 M Na2SO3 and 0.25 M Na2S. When the ZnS/CdS/TiO2 photoanode equipped with the PEC cell were operated at the optimal conditions, a maximum photocurrent density (8.17 mA/cm2) and photoconversion efficiency (3.56%) could be achieved. Moreover, the hydrogen generation rate reached to 87.98 mol/cm2-h with a long-term stability. As compared with CdS/TiO2 photoanode, the studied ZnS/CdS/TiO2 photoanode exhibited not only a promotion in photoactivity but also an increase in the hydrogen production rate. The lifetime of photoanode was increased as well, owing to the reduction in photocorrosion of photoanode.
1. M. Grätzel, “Powering the planet”, Nature, 403, 363 (2000).
2. C. Marchetti, Chemical Economy and Engineering Review, 5, 7 (1973).
3. 曲新生, 陳發林, 呂錫民, “產氫與儲氫技術”, 五南圖書, 初版 (2007).
4. P. Ridge, “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques” Noyes Data corporation, New Jersey, M. S. Casper (1978).
5. S. K. Khanal, W. H. Chen, L. Li, and S. Sung, ”Biological hydrogen production: effects of pH and intermediate products”, International Journal of Hydrogen Energy, 29, 1123-1131 (2004).
6. J.J. Lay, Y. J. Lee, and T. Noike, “Feasibility of biological hydrogen production from organic fraction of municipal solid waste”, Water Research, 33, 2579-2586 (1999).
7. W.H. Chen, S. Sung, and S. Y. Chen, “Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects”, International Journal of Hydrogen Energy, 34, 227-234 (2009).
8. 施翠盈, “本土性梭菌屬產氫菌株之分離與生理特性研究”, 國立成功大學 生物學研究所碩士論文 (2002).
9. A. Fujishima, and K. Honda, “Electrochemical photochemical photolysis of water at a semiconductor electrode”, Nature, 238, 37-38 (1972).
10. M. Qiao, Q. Chen, S. Wu, and J. Shen, “Novel sol–gel synthesis of N-doped TiO2 hollow spheres with high photocatalytic activity under visible light”, Journal of Sol-Gel Science and Technology, 55, 377–384 (2010).
11. P. D. Allen, and C. P. Huang, “The photocatalytic oxidation of sulfur-containing organic compounds using cadmium sulfide and the effect on CdS photocorrosion”, Water Research, 25, 1273–1278 (1991).
12. Y. Shaban, and S. Khan, “Surface frooved visible light active carbon modified (CM)-N-TiO2 thin films for efficient photoelectrochemical splitting of water”, Chemical Physics, 339, 73-85 (2007).
13. Y. Shaban, and S. Khan, “Visible light active carbon modified N-TiO2 for efficient hydrogen production by photoelctrochemical splitting of water”, International Journal of Hydrogen Energy, 33, 1118-1126 (2008).
14. Y. Shaban, and S. Khan, “Carbon modified (CM)-N-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations”, Journal of Solid State Electrochemistry, 13, 1025-1036 (2009).
15. F. Mourad, and U. M. K. Shahed, “Visible light active hydrogen modified (HM)-n-TiO2 thin films for photoelectrochemical splitting of water”, Electrochemistry Communications, 11, 2257–2260 (2009).
16. N. Lu, X. Quan, J. Y. Li, S. Chen, H. T. Yu, and G. H. Chen, “Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability”, Journal of Physical Chemistry C, 111, 11836-11842 (2007).
17. C. W. Lai, S. Sreekantan, and P. S. E, “Effect of radio frequency sputtering power on W–TiO2 nanotubes to improve photoelectrochemical performance”, Journal of Materials Research (2012).
18. A. Ghicova, B. Schmidtb, J. Kunzea, and P. Schmuki, “Photoresponse in the visible range from Cr doped TiO2 nanotubes”, Chemical Physics Letters, 433, 323-326 (2007).
19. J. Bai, J. Li, Y. Liu, B. Zhou, and W. Cai, “A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays”, Applied Catalysis B: Environmental, 95, 408–413 (2010).
20. K. Shin, I. S. Sang, H. I. Sang, and H. P. Jong, “CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells”, Chemical Communications, 46, 2385-2387 (2010).
21. K. Qing, Z. L. Qing, H. L. Shao, X. Y. Li, F. W. Ling, L. L. Sheng, and Y. C. Qing, “A ternary hybrid CdS/Pt–TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on escherichia coli”, Biomaterials, 31, 3317–3326 (2010).
22. Y. Hou, X. Li, X. Zou, X. Quan, and G. Chen, “Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation”, Environmental Science and Technology, 43, 858–863 (2009).
23. C. Chen, G. Ali, S. H. Yoo, J. M. Kuma, and S. O. Cho, “Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer”, Journal of Materials Chemistry, 21, 16430-16435 (2011).
24. W. Ho, J. C. Yu, and S. Lee, “Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity“, Journal of Solid State Chemistry, 179, 1171-1176 (2006).
25. C. Chi, Y. Lee, and H. Weng, “A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light”, Nanotechnology, 19, 125704 (2008).
26. Y. Lee, C. Chi, and S. Liau, “CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell”, Chemistry of Materials, 22, 922-927 (2010).
27. T. Edamura, and J. Muto, “Preparation and properties of electrodeposited ternary CdSxSel-x and Znx Cdl - x S films”, Thin Solid Films, 226, 135-139 (1993).
28. J. Z. Liu, P. X. Yan, G. H. Yue, L. B. Kong, R. F. Zhuo, D. M. Qu, “Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition”, Materials Letters, 60, 3471–3476 (2006).
29. Y. He, H.T. Lu, L. M Sai, Y. Y. Su, M. Hu, C. H. Fan, W. Huang, and L. H. Wang, “Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility”, Advanced Materials, 20, 3416 (2008).
30. D. V. Talapin, I. Mekis, S. Go1tzinger, A. Kornowski, O. Benson, andH. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core−shell−shell nanocrystals”, The Journal of Physical Chemistry B, 108, 18826 (2004).
31. N. May, J. H. S. Mark, and A. D. Eileen, “Low temperature, aerosol-assisted chemical vapor deposition (AACVD) of CdS, ZnS, and Cd1-xZnxS using monomeric single-source precursors: M(SOCCH3)2 TMEDA” Chemical Vapor Deposition, 2, 171–174 (1996).
32. Q. Liu, and G. B. Mao, “Comparison of CdS and ZnS thin films prepared by chemical bath deposition”, Surface Review and Letters, 16, 469–474 (2009).
33. M.P. Valkonen, T. Kanniainen, S. Lindroos, M. Leskela, and E. Rauhala, “Growth of ZnS, CdS and multilayer ZnS/CdS thin films by SILAR technique”, Applied Surface Science, 115, 386-392 (1997).
34. K. Yamaguchi, T. Yoshida, T. Sugiura, and H. Minoura, “One-step electrodeposition of CdS/ZnS bilayer from an aqueous mixture of Cd2+ and Zn2+”, Journal of Materials Research, 13, 917-921 (1998).
35. 徐國淦, “以化學浴沉積法製備CdS/TiO2光陽極進行光電化學產氫之研究”, 成功大學化工系碩士論文 (2010)
36. H. Urte, R. Christoph, and B. Michael, “Latticeconstants and molar volume in the system ZnS, ZnSe, CdS, CdSe”, Solid State Sciences, 5, 1259–1262 (2003).
37. P. Ridge, “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques”, Noyes Data corporation, New Jersey, M. S. Casper (1978).
38. S. Peter, K. Peter, and P. Johannes, “First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS”, Physical Review B, 47, 6971–6980 (1993).
39. A. Sclafani, and J. M. Herrmann, “ Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions”, Journal of Physical Chemistry, 100, 163-69131 (1996).
40. E. Wiberg, Frederick and A. Holleman, Inorganic Chemistry, Elsevier (2001).
41. 黃光弘, “硫化鋅螢光粉披覆二氧化鈦和二氧化矽之製備與特性研究”, 逢甲大學材料系碩士論文 (2003).
42. 胡啟章, “電化學原理與方法”, 五南圖書, 初版 (2002).
43. 古鎮豪, “以化學浴沉積法成長氧化鋅奈米線-奈米粒複合薄膜與其於染料敏化太陽能電池之應用”, 成功大學化工系博士論文 (2007)
44. S. Palmas, A. M. Polcaro, and J. R. Ruiz, “TiO2 photoanodes for electrically enhanced water splitting”, International Journal of Hydrogen Energy, 35, 6561-6570 (2010).
45. Q. A. S. Nguyen, Y. V. Bhargava, and V. R. Radmilovic, “Structural study of electrochemically synthesized TiO2 nanotubes via cross-sectional and high-resolution TEM”, Electrochimica Acta, 54, 4340-4344 (2009).
46. J. B. Allen, and R. F. Larry, “Electrochemical methods fundamentals and applications”, (2001).
47. 游博盛, “電沉積CdS/TiO2光陽極以應用於光電化學產氫之研究” 成功大學化工系碩士論文 (2011).
48. M. G. Walter, E. L. Warren, and J. R. McKone, “Solar water splitting cells” Chemical Reviews, 110, 6446-6473 (2010).
49. A. Hagfeldt, H. Lindstrom, S. Sodergren, and S. E. Lindquist, “Photoelectrochemical studies of colloidal TiO¬2 films: the effect of oxygen studied by photocurrent transients”, Journal of Electroanalysis Chemistry, 381, 39-46 (1995).
50. S. Vaclav, and K. Daniela, “TiO2/ZnS/CdS nanocomposite for hydrogen evolution and orange II dye degradation”, International Journal of Photoenergy, 2011, (2011).
51. A. V. Feitosa, M. A. R. Miranda, J. M. Sasaki, and M. A. Araújo-Silva, “A new route for preparing CdS thin films by chemical bath deposition using EDTA as ligand”, Brazilian Journal of Physics, 34, (2004).
52. Hong Ming Technology Co., Ltd. "Xenon Light Source"
53. A. Denis, “Cyclic Voltammetry”, (2008).
54. J. Y. Liao, and K. C. Ho, “A photovoltaic cell incorporating a dye-sensitized ZnS/ZnO composite thin film and a hole-injecting PEDOT layer”, Solar Energy Materials & Solar Cells, 86, 229-241 (2005).
55. J.B. Allen, and R. F. Larry, “Electrochemical Methods Fundamentals and Applications Second Edition (pp. 810). John Wiley & Sons, Inc.
56. J. Gong, Z. Dou, Q. Ding, Y. Xu, and W. Zhu, “Controlled synthesis of ZnO nanostructures by electrodeposition method”, Journal of Nanomaterials, 2010 740628-740633 (2010).
57. M. Wang, Y. Zhou, Y. Zhang, S. H. Hahn, and E. J. Kim, “From Zn(OH)2 to ZnO: a study on the mechanism of phase transformation”, CrystEngComm, 13, 6024 (2011).
58. M. G. Walter, E. L. Warren, and J. R. McKone, “Solar water splitting cells”, Chemical Reviews, 110, 6446-6473 (2010).
59. J. Sabate, S. Cervera-March, R. Simmaro, and J. Gimenez, “Photocatalytic production of hydeogen from sulfite wastestreams: a kinetic model for reactions occurring in illuminating suspensions of CdS”, Chemical Engineering Science, 45, 3089 (1990).
60. T. P. Lyubina, and E. A. Kozlova, “New photocatalysts based on cadmium and zinc sulfides for hydrogen evolution from aqueous Na2S-Na2SO3 solutions under irradiation with visible light”, Kinetics and Catalysis, 53, 188-196 (2012).