簡易檢索 / 詳目顯示

研究生: 陳慧慈
Chen, Hui-Tzu
論文名稱: 基於單一視角點雲之機械手臂抓取姿態生成演算法研究
Study on Object Grasping Pose Estimation Algorithm Based on Single-view Point Cloud
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 114
中文關鍵詞: 單一視角點雲物件拾取PointNet++抓取篩選
外文關鍵詞: Single-view Point Cloud, Object Grasping, PointNet++, Grasp Pose Filtering
相關次數: 點閱:58下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器人透過視覺拾取物件的技術廣泛地應用於日常生活之中。除了傳統簡單、重複性高的任務之外,如何更彈性地面對多元的場景,例如讓機器人透過演算法快速地判斷合適的抓取姿態、拾取未知甚至是堆疊的物件等,成為物件拾取重要的發展方向,也因此本論文聚焦在使用單一視角點雲的抓取姿態生成演算法研究。在論文中我們實現S4G演算法,並透過電腦模擬以及上機實驗,測試演算法所生成的抓取姿態在實際抓取任務中的效果。除此之外,論文中針對點雲的完整性對於S4G演算法的抓取效果影響,設計了點雲疊合演算法,並在模擬環境中進行抓取成功率比較。為了執行實際的物件抓取實驗,本論文也介紹了抓取流程中運用到的順逆向運動學,並且加入考量真實世界限制的抓取篩選機制。實驗顯示所用的演算法在球體、長方體、圓柱體等形狀物件的單物件及多物件場景有良好的抓取姿態生成效果。然而當場景中的物件擺放更為密集、堆疊程度提高及加入未知物件,所訓練的網路對於抓取生成的穩定性會降低。

    Robotic grasping technologies based on vision are widely used these days. Beyond performing traditional repetitive tasks, adapting to various scenarios such as, quickly deciding optimal grasp poses and the grasping of unknown objects has become an important issue in the field of robotic grasping. Therefore, this thesis focuses on studying the algorithm for grasp pose estimation based on a single-view point cloud. The S4G algorithm for generating grasp poses is implemented in this thesis. The effectiveness of the S4G algorithm is verified through simulations and real-world experiments. Both single object and multi-object grasping experiments were performed. Furthermore, in order to investgate the impact of point cloud completeness on algorithm performance, the network model was trained with complete point clouds which were merged by single-view point clouds and compared it to the one trained by single-view point clouds. To perform actual object grasping experiments, this thesis also introduces both forward and inverse kinematics which are essential in grasping processes. After the grasp poses are estimated, three criteria considering real-world limitations are added for filtering grasp poses. Through the experiment, the algorithm demonstrated good performance in estimating the grasp poses of both single object and multi-object scenarios composed of spheres, cuboids and cylinders. However, when scanarios became dense and cluttered with unknown objects, the performance of grasp pose estimation became worse.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 XI 目錄 XIII 圖目錄 XVI 表目錄 XVIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文貢獻與架構 5 第二章 基於點雲六自由度抓取生成演算法 7 2.1 拾取任務簡介 8 2.1.1 抓取姿態生成演算法 8 2.1.2 點雲(Point Cloud) 8 2.2 演算法介紹 9 2.2.1 訓練資料評分機制 10 2.2.2 訓練資料生成 14 2.2.3 網路架構-PointNet++ 20 2.2.4 實作細節與訓練結果 24 2.3 本章小結 27 第三章 機械手臂運動學模型 28 3.1 剛體機械手臂順向運動學 29 3.1.1 順向運動學推導 29 3.1.2 Franka Emika Panda 順向運動學 31 3.2 機械手臂逆向運動學 33 3.2.1 數值解 33 3.2.2 逆向運動學實作細節 35 3.3 本章小結 36 第四章 抓取篩選機制 37 4.1 篩選一、工作空間限制 38 4.2 篩選二、機械手臂關節角度限制 38 4.3 篩選三、夾爪傾斜角度 40 4.4 本章小結 43 第五章 物件抓取模擬與上機實驗 44 5.1 電腦模擬介紹與抓取流程說明 45 5.1.1 模擬設備與環境介紹 46 5.1.2 模擬一、單物件抓取 46 5.1.3 模擬二、點雲中物件完整性比較 50 5.2 上機驗證 54 5.2.1 上機驗證設備 54 5.2.2 實驗一、單物件抓取 55 5.2.3 實驗二、多物件抓取 58 5.2.4 模擬與上機驗證比較 65 5.3 本章小結 68 第六章 結論與建議 69 6.1 結論 69 6.2 未來展望與建議 70 參考文獻 71 附錄A、YCB訓練物件照片 76 附錄B、模擬一方塊抓取生成圖(上視圖) 77 附錄C、模擬二各視角抓取生成結果 80 附錄D、實驗二之一多物件不堆疊場景抓取過程 83 附錄E、實驗二之二多物件堆疊場景抓取過程 88

    [1] M. Christopher. “World Robotics - Industrial Robots.” International Federation of Robotics. [Online] Available: International Federation of Robotics (ifr.org). (accessed Jun. 11, 2024).
    [2] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based Robotic Grasping from Object Localization, Object Pose Estimation to Grasp Estimation for Parallel Grippers: a Review,” Artificial Intelligence Review, vol. 54, no. 3, pp. 1677-1734, Mar. 2021.
    [3] H. Cao, G. Chen, Z. Li, J. Lin, and A. Knoll, “Lightweight Convolutional Neural Network with Gaussian-based Grasping Representation for Robotic Grasping Detection,” 2021, arXiv:2101.10226.
    [4] 陳亞伶,基於電腦視覺與深度增強式學習之工業用機械手臂物件取放任務研究,國立成功大學,電機工程學系,2021。
    [5] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Convolution on χ-transformed Points,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 826–836.
    [6] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep Learning on Point Sets for 3d Classification and Segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 652-660.
    [7] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space,” in Proc. Adv. Neural Inf. Process. Syst., 2017.
    [8] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, Feb. 1992.
    [9] P. Biber and W. Strasser, “The Normal Distributions Transform: A New Approach to Laser Scan Matching,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 3, Nov. 2003, pp. 2743–2748.
    [10] D. Yang, T. Tosun, B. Eisner, V. Isler, and D. Lee, “Robotic Grasping through Combined Image-based Grasp Proposal and 3D Reconstruction,” in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 6350–6356.
    [11] X. Yan, M. Khansari, J. Hsu, Y. Gong, Y. Bai, S. Pirk and H. Lee, “Data-efficient Learning for Sim-to-real Robotic Grasping Using Deep Point Cloud Prediction Networks,” 2019, arXiv:1906.08989.
    [12] P. R. Florence, L. Manuelli, and R. Tedrake, “Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation,” in Conference on Robot Learning. PMLR. 2018, pp. 373-385.
    [13] Y. Lin, C. Tang, F.-J. Chu, and P. A. Vela, “Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for Object Grasping,” Sep. 2019, vol. 1, pp. 1–8, arXiv:1909.08508.
    [14] A. ten Pas and R. Platt. “Using Geometry to Detect Grasp Poses in 3d Point Clouds,” Robotics Research, pages 307–324. Springer, 2018.
    [15] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp Pose Detection in Point Clouds,” The International Journal of Robotics Research, vol. 36, no. 13-14, pp. 1455-1473, 2017.
    [16] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun and J. Zhang, “PointnetGPD: Detecting Grasp Configurations from Point Sets,” in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 3629–3635.
    [17] P. Ni, W. Zhang, X. Zhu, and Q. Cao, “PointNet++ Grasping: Learning an End-to-end Spatial Grasp Generation Algorithm from Sparse Point Clouds,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 3619–3625
    [18] B. Zhao, H. Zhang, X. Lan, H. Wang, Z. Tian, and N. Zheng, “RegNet: Region-based Grasp Network for End-to-end Grasp Detection in Point Clouds,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 13474–13480.
    [19] Y. Qin, R. Chen, H. Zhu, M. Song, J. Xu, and H. Su, “S4g: Amodal Single-view Single-shot SE (3) Grasp Detection in Cluttered Scenes,” in Proc. Conf. Robot Learning. PMLR, 2020, pp. 53–65.
    [20] D. Prattichizzo and J. C. Trinkle, Grasping, 2008, pp. 671-700.
    [21] R. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation. Boca Raton, FL, USA: CRC Press, 1994
    [22] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The YCB Object and Model Set: Towards Common Benchmarks for Manipulation Research,” in Proc. Int. Conf. Adv. Robot., 2015, pp. 510-517.
    [23] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “GraspNet: A Large-Scale Clustered and Densely Annotated Dataset for Object Grasping,” 2019, arXiv:1912.13470.
    [24] T. Patten, K. Park, and M. Vincze, “DGCM-Net: Dense Geometrical Correspondence Matching Network for Incremental Experience-based Robotic Grasping,” Front. Robot. AI, vol. 7, 2020, Art. no. 120.
    [25] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A Physics Engine for Model-based Control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012, pp. 5026-5033.
    [26] E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties,” International Statistical Review / Revue Internationale de Statistique, vol. 57, no. 3, p. 238, Dec. 1989.
    [27] J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.
    [28] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the Continuity of Rotation Representations in Neural Networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019.
    [29] J. J. Craig, Introduction to Robotics: Mechanics and Control, Pearson Prentice Hall, 2005.
    [30] “Franka Control Interface Documentation — Franka Control Interface (FCI) documentation,” [Online] Available: https://frankaemika.github.io/docs/index.html. (accessed Sep. 11, 2023).
    [31] S. Akram and Q. U. Ann, “Newton Raphson Method,” International Journal of Scientific & Engineering Research, vol. 6, no. 7, pp. 1748-1752, 2015.
    [32] R. W. Wedderburn, “Quasi-likelihood Functions, Generalized Linear Models, and the Gauss—Newton Method,” Biometrika, vol. 61, no. 3, pp. 439-447, 1974.
    [33] N. Yamashita and M. Fukushima, “On the Rate of Convergence of the Levenberg-Marquardt Method,” in Topics in Numerical Analysis: With Special Emphasis on Nonlinear Problems, 2001: Springer, pp. 239-249.
    [34] P. Corke and J. Haviland, “Not Your Grandmother’s Toolbox – the Robotics Toolbox Reinvented for Python,” in IEEE Int. Conf. Robot. Autom., 30 May-5 June 2021, pp. 11357-11363.
    [35] “UR5 Technical Specifications,” Universal Robots A/S, Denmark. [Online] Available: https://www.universal-robots.com/media/50588/ur5_en.pdf (accessed Apr. 17, 2024).
    [36] D. F. Huber and M. Hebert, “Fully Automatic Registration of Multiple 3D Data Sets,” Image and Vision Computing, vol. 21, no. 7, pp. 637–650, Jul. 2003.
    [37] S. Fantoni, U. Castellani, and A. Fusiello, “Accurate and Automatic Alignment of Range Surfaces,” in Proc. Int. Conf. 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), Oct. 2012, pp.73-80.
    [38] Z. Gojcic, C. Zhou, J. D. Wegner, L. J. Guibas, and T. Birdal, “Learning Multiview 3D Point Cloud Registration,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1759–1769.
    [39] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting of Two 3-D Point Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 5, pp. 698–700, May 1987.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE