| 研究生: |
李冠緯 Li, Guan-Wei |
|---|---|
| 論文名稱: |
整合浮動式離岸風場與再生能源場經模組化多階轉換器之多端高壓直流鏈饋入多機電力系統之穩定度分析 Stability Analysis of Integrating a Floating Offshore Wind Farm with Renewable Energy Farms Fed to a Multimachine Power System Through a Multi-Terminal High-Voltage Direct-Current Link based on a Modular Multilevel Converter |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 198 |
| 中文關鍵詞: | 浮動式離岸風場 、海洋溫差發電系統 、模組化多階轉換器 、多端高壓直流鏈 、穩定度 、輔助阻尼控制器 |
| 外文關鍵詞: | Floating offshore wind farm, ocean thermal energy conversion system, modular multilevel converter, multi-terminal high-voltage direct-current link, stability, supplementary damping controller |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在探討多種再生能源場透過以模組化多階轉換器為基礎之多端高壓直流鏈連接至多機電力系統之穩定度分析。所建構之微電網包含浮動式離岸風場、固定式基座離岸風場與海洋溫差發電系統,分別經由多端高壓直流鏈連接至含有四部同步發電機之多機電力系統。本論文研究首先針對系統在不同工作條件下進行小訊號穩定度分析,進而根據系統中之低頻振盪模態設計模組化多階轉換器之輔助阻尼控制器,並透過頻域分析方法驗證其參數配置之合理性。本論文最後進行動態與暫態時域模擬,以評估控制器在各種擾動情境下之控制效能。由模擬結果顯示,本論文所設計之控制器可抑制系統振盪、提升穩定度與響應品質。
This thesis conducts a stability analysis of integrating various renewable energy sources into a multimachine power system (MMPS) via a multi-terminal high-voltage direct-current (MTDC) link based on a modular multilevel converter (MMC). The constructed microgrid consists of a floating offshore wind farm (FOWF), a fixed-bottom (FBOWF), and an ocean thermal energy conversion (OTEC) system, each connected to the MMPS comprising four synchronous generators through the MTDC link. The study first performs small-signal stability analysis under various operating conditions. Based on the identified low-frequency oscillation modes, a supplementary damping controller (SDC) for the MMC is designed, and its parameter configuration is verified through frequency-domain analysis. Finally, dynamic and transient time-domain simulations are conducted to evaluate the SDC’s performance under various disturbance scenarios. Simulation results demonstrate that the proposed SDC can suppress system oscillations and enhance both stability and response quality.
[1] D. Micallef and A. Rezaeiha, “Floating offshore wind turbine aerodynamics: trends and future challenges,” Renewable and Sustainable Energy Reviews, vol. 152, pp. 1-19, Dec. 2021.
[2] W. Wang, K. Sheng, S. Cheng, Z. Zhan, Q. Yao, and X. Wu, ‘‘Modelling and tensioned mooring control of a semi-submersible wind turbine,’’ in Proc. 2024 Chinese Control and Decision Conference (CCDC), Xian, Shaanxi, China, May 25-27, 2024, pp. 5419-5424.
[3] Y. Hu, J. Wang, Z. Wang, Z. Zhan, and Z. Q. Chen, ‘‘Structural control for a barge-type floating offshore wind turbine with a skyhook inerter configuration,’’ in Proc. 2020 Chinese Control and Decision Conference (CCDC), Hefei, Anhui, China, Aug. 22-24, 2020, pp. 3400-3405.
[4] A. R. Khatib, T. G. Paul, S. A. A. Ghamdi, and V. Kumar, “Shunt reactor control performances for HVAC submarine cable,” IEEE Trans. Industry Applications, vol. 60, no. 3, pp. 5211-5220, Mar. 2024.
[5] K. R. Padiyar, HVDC Power Transmission Systems, Hoboken, NJ, USA: John Wiley & Sons, 2021.
[6] S. D. Joshi, M. B. Ghat, A. Shukla, and M. C. Chandorkar, “Improved balancing and sensing of submodule capacitor voltages in modular multilevel converter,” IEEE Trans. Industry Applications, vol. 57, no. 1, pp. 537-548, Sep. 2020.
[7] Y. Sun, L. Han, B. Li, Z. Xu, S. Zhou, and D. Xu, ‘‘A hybrid modular multilevel converter comprising Si submodules and SiC submodules with its specialized capacitor voltage balancing strategy,’’ in Proc. 2022 IEEE Transportation Electrification Conference (ITEC), Haining, Zhejiang, China, Oct. 28-31, 2022, pp. 1-6.
[8] S. Lu, L. Yuan, K. Li, and Z. Zhao, ‘‘An improved phase-shifted carrier modulation scheme for a hybrid modular multilevel converter,’’ IEEE Trans. Power Electronics, vol. 32, no. 1, pp. 81-97, Feb. 2016.
[9] H. R. A. Mohamed and Y. A. I. Mohamed, ‘‘Assessment and mitigation of DC breaker impacts on VSC-MTDC grid equipped with power flow controller,’’ IEEE Open Journal of Power Electronics, vol. 4, pp. 237-251, Feb. 2023.
[10] T. D. Pham, M. C. Dinh, H. M. Kim, and T. T. Nguyen, “Simplified floating wind turbine for real-time simulation of large-scale floating offshore wind farms,” Energies, vol. 14, no. 15, pp. 1-18, Jul. 2021.
[11] A. Rolan, E. R. Ramirez, S. Bogarra, and J. Saura, “Speed estimation in PMSG-based wind turbines from DC voltage measurement,’’ IEEE Trans. Instrumentation and Measurement, vol. 73, no. 1, pp. 101-113, Oct. 2024.
[12] M. C. Dinh, M. Park, and T. T. Nguyen, ‘‘Simplified floating offshore wind turbine model for time-domain simulation,’’ in Proc. 2019 International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, Nov. 03-06, 2019, pp. 270-275.
[13] C. Wang, J. Xu, X. Pan, W. Gong, Z. Zhu, and S. Xu, ‘‘Impedance modeling and analysis of series-connected modular multilevel converter and its comparative study with conventional MMC for HVDC applications,’’ IEEE Trans. Power Delivery, vol. 37, no. 4, pp. 3270-3281, Nov. 2021.
[14] K. Ma, E. Li, B. He, and X. Cai, ‘‘Mechanism and cancellation of DC current fluctuation in MMC excited by circulating current mitigation under nearest level control,’’ IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 6822-6831, Mar. 2022.
[15] H. Shen, Z. Dongye, L. Qi, M. Wang, X. Zhang, and P. Qiu, ‘‘Modeling of High-frequency electromagnetic oscillation for DC fault in MMC-HVDC systems,’’ CSEE Journal of Power and Energy Systems, vol. 9, no. 3, pp. 1151-1160, Dec. 2022.
[16] 李庭佑,以模組化多階轉換器為基礎之多饋入式高壓直流輸電系統連接再生能源之穩定度改善分析,國立成功大學電機工程學系碩士論文,2024年6月。
[17] X. He, W. He, Y. Liu, Y. Wang, G. Li, and Y. Wang, ‘‘Robust adaptive control of an offshore ocean thermal energy conversion system,’’ IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 50, no. 12, pp. 5285-5295, Dec. 2020.
[18] M. O. M. R. Hakim, F. Yakub, N. N. M. Johan, R. Tasnin, M. F. Zhafran, and M. F. Akmal, “Modeling hybrid ocean thermal energy conversion system for malaysia landscape,’’ in Proc. 2024 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Kuala Lumpur, Malaysia, Oct. 01-03, 2024, pp. 1-6.
[19] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
[20] N. Salem and M. Ali, “Pole-placement and different PID controller structures comparative analysis for a DC motor optimal performance,” in Proc. 2024 Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, Jan. 15-16, 2024, pp. 58-63.
[21] Y. Zhu, J. Pou, and G. Konstantinou, “Impedance shaping effects and stability assessment of circulating current control schemes in modular multilevel converters,” IEEE Trans. Power Delivery, vol. 38, no. 1, pp. 666-676, Aug. 2022.
[22] B. Zhang, X. Du, C. Du, J. Zhao, and F. Li, “Stability modeling of a three-terminal MMC-HVDC transmission system,” IEEE Trans. Power Delivery, vol. 37, no. 3, pp. 1754-1763, Jun. 2022.
[23] K. A. Singh, A. Chaudhary, and K. Chaudhary, “Three-phase AC-DC converter for direct-drive PMSG-based wind energy conversion system,” Journal of Modern Power Systems and Clean Energy, vol. 11, no. 2, pp. 589-598, Jul. 2022.
[24] S. Heier, Grid Integration of Wind Energy Conversion Systems, Chichester, UK: John Wiley & Sons, 2014.
[25] B. Farid, A. Rachide, and B. M. Lokmane, “Control of the doubly fed induction generator in WECS,” in Proc. 2014 IEEE Conference on Power Engineering and Renewable Energy (ICPERE), Bali, Indonesia, Dec. 09-11, 2014, pp. 25-30.
[26] H. Liang, Z. He, J. Guo, X. Wang, Z. Lin, and L. Zhang, “Mass-spring-damping-based tissue deformation modeling for robotic acupuncture,” in Proc. 2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC), Shenzhen, Guangdong, China, Oct. 20-22, 2023, pp. 647-652.
[27] G. Huang, F. Shen, S. Huang, Q. Wu, J. Wei, and Y. Qu, “Novel black start control strategy with power boundary analysis for PMSG-based wind turbines,” IEEE Trans. Sustainable Energy, vol. 15, no. 2, pp. 1224-1238, Nov. 2023.
[28] 官秉霖,採用串聯向量補償器於抑制混合式離岸風場之次同步共振,國立成功大學電機工程學系碩士論文,2017年7月。
[29] A. Kazemian, Y. basati, M. Khatibi, and T. Ma, “Performance prediction and optimization of a photovoltaic thermal system integrated with phase change material using response surface method,” Journal of Cleaner Production, vol. 290, pp. 1-17, Mar. 2021.
[30] 黃宸斌,太陽集熱型海洋溫差發電系統之特性分析,國立成功大學電機工程學系碩士論文,2009年7月。
[31] P. S. Kundur and O. P. Malik, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 2022.
[32] V. Vittal, J. D. McCalley, P. M. Anderson, and A. A. Fouad, Power System Control and Stability, Hoboken, NJ, USA: John Wiley & Sons, 2019.
[33] P. C. Krause, Analysis of Electric Machinery, New York, NY, USA: McGraw-Hill, 1986.
[34] IEEE, “Excitation System Models for Power System Stability Studies,” IEEE Trans. Power Apparatus and Systems, vol. 100, no. 2, pp. 494-509, Feb. 1981.
[35] 林裕涵,同步發電機採用以模組化多階轉換器為基礎之高壓直流鏈連接至電網之穩定度分析,國立成功大學電機工程學系碩士論文,2023年7月。