| 研究生: |
蔡孝寧 Tsai, Xiao-Ning |
|---|---|
| 論文名稱: |
藉由空間位阻機制製備穩定的金屬或金屬氧化物奈米粒子與HPMC之複合溶液及HPMC複合膜的負載能力,巨觀磨潤行為之研究 Study on Preparation of Stable HPMC Composite Solution with Metal/Oxide Nanoparticle by Steric Stabilization and Load Capacity, Macro-scale Tribological Behavior of Composite Films |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | HPMC 、奈米粒子 、空間位阻 、三體 、磨潤性質 |
| 外文關鍵詞: | HPMC, nanoparticle, Steric stabilization, third bodies, lubricating properties |
| 相關次數: | 點閱:81 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
羥丙基甲基纖維素(HPMC)屬於軟質材料受壓後容易變形使其應用受限,吾人將金屬或金屬氧化物奈米鋁、銅粒子以及當作分散劑的Span80加入HPMC中製備出複合膜,提升HPMC薄膜抵抗負載的能力及改善其磨潤性質。
研究顯示Span 80作為分散劑可以在奈米粒子周圍產生空間位阻(Steric stabilization)的穩定性機制使奈米粒子得以和溶劑形成穩定的奈米懸浮液,在混入HPMC後製備出更加穩定的複合溶液。複合膜內的奈米粒子具有承受負載的能力,負載能力增強且相對的真實接觸面積較小,因此金屬奈米添加物複合膜之摩擦係數及磨耗率得以降低。金屬氧化物奈米添加物在磨耗的過程中作為三體,留在磨痕內與對磨件接觸並藉由滾動來調節介面間的速度差,因此磨潤性質有顯著的提升。
實驗後的複合膜溶回複合溶液內並將其稀釋後注入過濾設備中,濾紙及濾膜將大於濾徑的奈米粒子逐步過濾,使粒子與溶液得以分離,避免奈米粒子流入環境造成汙染。
Hydroxypropyl methylcellulose (HPMC) is a kind of biopolymer with the character-istics of biodegradability, environment friendly, great mechanical properties and tribological properties. Therefore, it is suitable to develop as substituted materials of plastic. However, HPMC deforms easily when it bears the loading, causing real con-tact area and the adhesive force between HPMC and counter(AISI52100) increase, so that the HPMC film is easily damaged due to adhesive wear, and leading to lose efficacy on wear resistance. Hence, nanoparticles(NPs) Al, Cu, Al2O3, CuO have been used as fillers, by means of procedure, nano- suspension with dispersant (Span80) were prepared, and mixed with HPMC solution to prepare composite solu-tions and composite films. The study examined the basic properties (quality analysis, thickness, surface roughness, morphology), load capacity and macro-scale tribologi-cal behaviors. Results showed that Span80 could provide steric stabilization, and dispersed the NPs effectively in suspension. After suspension mixed with HPMC so-lution, HPMC made composite solution more stable. The load capacity of composite film remarkably enhanced, especially Cu/HPMC composite film. In terms of tribo-logical behaviors, the NPs Al and Cu occur deformation after wear test of low load-ing, the wear resistances had rose. Spherical CuO and sphere-like Al2O3 occurred rolling effect as third-body at interface during the test, so that the coefficient of fric-tion and wear rate decreased significantly. Since HPMC is soluble in water and or-ganic solvents (ethanol, and so on), the composite solution could be separated into additive and solution easily by appropriate pore size of filters, preventing pollution and recycling limited resources.
[1]P. Stenius, L. Järnström, M. Rigdahl,Aggregation in concentrated kaolin suspensions stabilized by polyacrylate, Colloids and surfaces, 51 (1990) pp.219-238.
[2]T.M. Sager, D.W. Porter, V.A. Robinson, W.G. Lindsley, D.E. Schwegler-Berry, V. Castranova,Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity, Nanotoxicology, 1 (2007) pp.118-129.
[3]J. Jiang, G. Oberdörster, P. Biswas,Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research, 11 (2009) pp.77-89.
[4]A. Wei,Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials, Chemical Communications, (2006) pp.1581-1591.
[5]G. Nie, G. Li, L. Wang, X. Zhang,Nanocomposites of polymer brush and inorganic nanoparticles: preparation, characterization and application, Polymer Chemistry, 7 (2016) pp.753-769.
[6]E. Amstad, T. Gillich, I. Bilecka, M. Textor, E. Reimhult,Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups, Nano letters, 9 (2009) pp.4042-4048.
[7]L. Kvitek, A. Panáček, J. Soukupova, M. Kolář, R. Večeřová, R. Prucek, M. Holecova, R. Zbořil,Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs), The Journal of Physical Chemistry C, 112 (2008) pp.5825-5834.
[8]L. Wu, J. Zhang, W. Watanabe,Physical and chemical stability of drug nanoparticles, Advanced drug delivery reviews, 63 (2011) pp.456-469.
[9]M. Balastre, J. Argillier, C. Allain, A. Foissy,Role of polyelectrolyte dispersant in the settling behaviour of barium sulphate suspension, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211 (2002) pp.145-156.
[10]Z. Yaremko, D. Nikipanchuk, L. Fedushinskaya, I. Uspenskaya,Redispersion of highly disperse powder of titanium dioxide in aqueous medium, Colloid Journal, 63 (2001) pp.253-258.
[11]Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, J.C. Crittenden,Stability of commercial metal oxide nanoparticles in water, Water research, 42 (2008) pp.2204-2212.
[12]K. Jiang, P. Pinchuk,Temperature and size-dependent Hamaker constants for metal nanoparticles, Nanotechnology, 27 (2016) pp.345710.
[13]B. Boonstra,Role of particulate fillers in elastomer reinforcement: a review, Polymer, 20 (1979) pp.691-704.
[14]N. Kida, M. Ito, F. Yatsuyanagi, H. Kaido,Studies on the structure and formation mechanism of carbon gel in the carbon black filled polyisoprene rubber composite, Journal of applied polymer science, 61 (1996) pp.1345-1350.
[15]S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai,Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Composites Part B: Engineering, 39 (2008) pp.933-961.
[16]T. Jiang, T. Kuila, N.H. Kim, B.-C. Ku, J.H. Lee,Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites, Composites Science and Technology, 79 (2013) pp.115-125.
[17]A.C. Balazs, T. Emrick, T.P. Russell,Nanoparticle polymer composites: where two small worlds meet, Science, 314 (2006) pp.1107-1110.
[18]D.R. Tenney, J.G. Davis Jr, R.B. Pipes, N. Johnston,NASA composite materials development: lessons learned and future challenges, (2009).
[19]R. Bradshaw, F. Fisher, L. Brinson,Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor, Composites Science and Technology, 63 (2003) pp.1705-1722.
[20]J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko,Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 44 (2006) pp.1624-1652.
[21]D. Barbier, D. Brown, A.-C. Grillet, S. Neyertz,Interface between end-functionalized PEO oligomers and a silica nanoparticle studied by molecular dynamics simulations, Macromolecules, 37 (2004) pp.4695-4710.
[22]G. Odegard, T. Clancy, T. Gates,Modeling of the mechanical properties of nanoparticle/polymer composites, Polymer, 46 (2005) pp.553-562.
[23]J.G. Derraik,The pollution of the marine environment by plastic debris: a review, Marine pollution bulletin, 44 (2002) pp.842-852.
[24]S.L. Wright, R.C. Thompson, T.S. Galloway,The physical impacts of microplastics on marine organisms: a review, Environmental pollution, 178 (2013) pp.483-492.
[25]V. Stone, H. Johnston, M.J. Clift,Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions, IEEE transactions on nanobioscience, 6 (2007) pp.331-340.
[26]M. Moore,Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environment international, 32 (2006) pp.967-976.
[27]Q.L. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim,A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, Journal of biomedical materials research, 52 (2000) pp.662-668.
[28]S.-C. Shi, T.-F. Huang,Raman study of HPMC biopolymer transfer layer formation under tribology test, Optical and Quantum Electronics, 48 (2016) pp.532.
[29]黃騰鋒,羥丙基甲基纖維素綠色薄膜自我修復與磨潤性質研究, 成功大學機械工程學系學位論文, (2016) pp.1-64.
[30]A. Fatimi, J.-F. Tassin, R. Turczyn, M.A. Axelos, P. Weiss,Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization, Acta biomaterialia, 5 (2009) pp.3423-3432.
[31]S.-C. Shi, F.-I. Lu,Biopolymer green lubricant for sustainable manufacturing, Materials, 9 (2016) pp.338.
[32]G.A. Burdock,Safety assessment of hydroxypropyl methylcellulose as a food ingredient, Food and Chemical Toxicology, 45 (2007) pp.2341-2351.
[33]M.M. Al-Tabakha,HPMC capsules: current status and future prospects, Journal of Pharmacy & Pharmaceutical Sciences, 13 (2010) pp.428-442.
[34]R. Zúñiga, O. Skurtys, F. Osorio, J. Aguilera, F. Pedreschi,Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure, Carbohydrate polymers, 90 (2012) pp.1147-1158.
[35]M. Jayalakshmi, N. Venugopal, B.R. Reddy, M.M. Rao,Optimum conditions to prepare high yield, phase pure α-Ni (OH) 2 nanoparticles by urea hydrolysis and electrochemical ageing in alkali solutions, Journal of power sources, 150 (2005) pp.272-275.
[36]X. Wang, P. Wang, J. Ma, H. Liu, P. Ning,Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration, Applied Surface Science, 345 (2015) pp.57-66.
[37]Y. Zhang, S. Wang, M. Xiao, S. Bian, Y. Meng,The silica-doped sulfonated poly (fluorenyl ether ketone) s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 34 (2009) pp.4379-4386.
[38]S.-C. Shi, T.-F. Huang, J.-Y. Wu,Preparation and tribological study of biodegradable lubrication films on Si substrate, Materials, 8 (2015) pp.1738-1751.
[39]S.-C. Shi, T.-F. Huang,Self-healing materials for ecotribology, Materials, 10 (2017) pp.91.
[40]S.-C. Shi, J.-Y. Wu, T.-F. Huang,Raman, FTIR, and XRD study of MoS2 enhanced hydroxypropyl methylcellulose green lubricant, Optical and Quantum Electronics, 48 (2016) pp.474.
[41]S.-C. Shi, J.-Y. Wu, T.-F. Huang, Y.-Q. Peng,Improving the tribological performance of biopolymer coating with MoS2 additive, Surface and Coatings Technology, 303 (2016) pp.250-255.
[42]吳振宇,羥丙基甲基纖維素複合薄膜添加二硫化鉬之微結構與磨潤特性研究, 成功大學機械工程學系學位論文, (2016) pp.1-77.
[43]S.-C. Shi, J.-Y. Wu, Y.-Q. Peng,Transfer layer formation in MoS 2/hydroxypropyl methylcellulose composite, Wear, (2018).
[44]彭耀慶,以硬脂酸增進羥丙基甲基纖維素複合膜疏水性與巨觀尺度下磨潤性質之研究, 成功大學機械工程學系學位論文, (2017) pp.1-111.
[45]S. Aralihalli, S.K. Biswas,Grafting of dispersants on MoS 2 nanoparticles in base oil lubrication of steel, Tribology letters, 49 (2013) pp.61-76.
[46]I.S. Ahmed, M.H. Aboul-Einien,In vitro and in vivo evaluation of a fast-disintegrating lyophilized dry emulsion tablet containing griseofulvin, European journal of pharmaceutical sciences, 32 (2007) pp.58-68.
[47]Y. Tanwar, C. Chauhan, A. Sharma,Development and evaluation of carvedilol transdermal patches, Acta pharmaceutica, 57 (2007) pp.151-159.
[48]Y. Phalguna, B. Venkateshwarlu, G.K. Gudas, S. Debnath,HPMC microspheres of zidovudine for sustained release, Int J Pharm Pharm Sci, 2 (2010) pp.41-43.
[49]W. Jianjun, X. Qunji,Effects of surfactants on the tribological properties of a Cr2O3 coating, Wear, 162 (1993) pp.229-233.
[50]M. Godet,Third-bodies in tribology, Wear, 136 (1990) pp.29-45.
[51]M. Godet,The third-body approach: a mechanical view of wear, Wear, 100 (1984) pp.437-452.
[52]Y. Berthier,Experimental evidence for friction and wear modelling, Wear, 139 (1990) pp.77-92.
[53]I. Iordanoff, Y. Berthier, S. Descartes, H. Heshmat,A review of recent approaches for modeling solid third bodies, Journal of Tribology, 124 (2002) pp.725-735.
[54]S. Descartes, Y. Berthier,Rheology and flows of solid third bodies: background and application to an MoS1. 6 coating, Wear, 252 (2002) pp.546-556.
[55]S. Descartes, C. Desrayaud, E. Niccolini, Y. Berthier,Presence and role of the third body in a wheel–rail contact, Wear, 258 (2005) pp.1081-1090.
[56]G. Colas, A. Saulot, C. Godeau, Y. Michel, Y. Berthier,Decrypting third body flows to solve dry lubrication issue–MoS2 case study under ultrahigh vacuum, Wear, 305 (2013) pp.192-204.
[57]L. Pena-Paras, J. Taha-Tijerina, L. Garza, D. Maldonado-Cortés, R. Michalczewski, C. Lapray,Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils, Wear, 332 (2015) pp.1256-1261.
[58]N. Chand, A. Naik, S. Neogi,Three-body abrasive wear of short glass fibre polyester composite, Wear, 242 (2000) pp.38-46.
[59]E. Rabinowicz, L. Dunn, P. Russell,A study of abrasive wear under three-body conditions, Wear, 4 (1961) pp.345-355.
[60]R. Trezona, D. Allsopp, I. Hutchings,Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test, Wear, 225 (1999) pp.205-214.
[61]E. Rabinowicz, A. Mutis,Effect of abrasive particle size on wear, Wear, 8 (1965) pp.381-390.
[62]D.-X. Peng, C.-H. Chen, Y. Kang, Y.-P. Chang, S.-Y. Chang,Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant, Industrial Lubrication and Tribology, 62 (2010) pp.111-120.
[63]C.J. Reeves, P.L. Menezes, M.R. Lovell, T.-C. Jen,The influence of surface roughness and particulate size on the tribological performance of bio-based multi-functional hybrid lubricants, Tribology International, 88 (2015) pp.40-55.
[64]K.L. Harris, A.A. Pitenis, W.G. Sawyer, B.A. Krick, G.S. Blackman, D.J. Kasprzak, C.P. Junk,PTFE tribology and the role of mechanochemistry in the development of protective surface films, Macromolecules, 48 (2015) pp.3739-3745.
[65]S. Bahadur,The development of transfer layers and their role in polymer tribology, Wear, 245 (2000) pp.92-99.
[66]S.-C. Shi,Tribological performance of green lubricant enhanced by sulfidation IF-MoS2, Materials, 9 (2016) pp.856.
[67]M. Conte, A. Igartua,Study of PTFE composites tribological behavior, Wear, 296 (2012) pp.568-574.
[68]M.N. Gardos,The synergistic effects of graphite on the friction and wear of MoS2 films in air, Tribology Transactions, 31 (1988) pp.214-227.
[69]R. Leach, H. Haitjema,Bandwidth characteristics and comparisons of surface texture measuring instruments, Measurement Science and Technology, 21 (2010) pp.032001.
[70]P. Zhu, B. Liu, L. Bao,Preparation of double-coated TiO2 nanoparticles using an anchoring grafting method and investigation of the UV resistance of its reinforced PEI film, Progress in Organic Coatings, 104 (2017) pp.81-90.
[71]T. Youngs, S. Haq, M. Bowker,Formic acid adsorption and oxidation on Cu (1 1 0), Surface Science, 602 (2008) pp.1775-1782.
[72]R. Parhi, P. Suresh,Extended release of metoprolol succinate from HPMC reinforced alginate microparticle, FABAD J. Pharm. Sci, 36 (2011) pp.1-10.
[73]W. Jablonska, in, Sheffield Hallam University, (2011).
[74]S. Sahoo, C.K. Chakraborti, S.C. Mishra, S. Naik,Analytical
characterization of a gelling biodegradable polymer, (2011).
[75]M.I. Khan, A. Madni, S. Ahmad, A. Khan, M. Rehmanand, M.A. Mahmood,ATR-FTIR Based Pre and Post Formulation Compatibility Studies for the Design of Niosomal Drug Delivery System Containing Nonionic Amphiphiles and Chondroprotective Drug, Journal of the Chemical Society of Pakistan, 37 (2015).
[76]S. Reham, H. Masjuki, M. Kalam,FTIR and H NMR analysis of water emulsified Palm biodiesel with Span 80.
[77]K. Holmberg, A. Mathews,Coatings tribology: a concept, critical aspects and future directions, Thin Solid Films, 253 (1994) pp.173-178.
[78]H. Unal, A. Mimaroglu, U. Kadıoglu, H. Ekiz,Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions, Materials & Design, 25 (2004) pp.239-245.
[79]B. Stuart,Surface plasticisation of poly (ether ether ketone) by chloroform, Polymer testing, 16 (1997) pp.49-57.
[80]J. Archard,Elastic deformation and the laws of friction, Proc. R. Soc. Lond. A, 243 (1957) pp.190-205.