| 研究生: |
劉惠瑜 Liou, Huei-Yu |
|---|---|
| 論文名稱: |
以射頻濺鍍製備不同擇優取向之氮化鋁薄膜及其應用於電阻式隨機存取記憶體之研究 Investigations of RF Sputtered AlN Thin Films with Different Orientations and Its Applications on Resistive Random Access Memories |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 氮化鋁 、優選取向 、金屬橋接隨機存取記憶體 |
| 外文關鍵詞: | AlN, orientation, Conductive Bridge Random Access Memory |
| 相關次數: | 點閱:78 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來半導體產業的記憶體技術蓬勃發展,在眾多非揮發式記憶體(NVM)中,電阻式記憶體(RRAM)具有取代快閃記憶體的潛力。由於金屬橋接隨機存取記憶體(CBRAM)具有低功率消耗和高記憶窗等優點,因此尋找更適用於CBRAM的材料也是值得探討的議題。氮化鋁(AlN)擁有許多可應用於RRAM的特點,且在非高溫的製程下便具有良好的絕緣性,然而,將非晶相及[100]軸向之AlN應用於CBRAM的探討卻非常罕見。
本論文採用射頻濺鍍系統製備出不同軸向的AlN薄膜,在本論文的第一部份,詳細探討AlN薄膜的材料特性;在本論文的第二部分,將AlN薄膜作為CBRAM的固態電解質,並檢視元件的電性、穩定性以及變溫特性。對應於不同的應用考量,非晶相的AlN元件因具備高達3.12 × 106記憶窗而可以呈現出較低的位元錯誤率;另一方面,具有0.24伏特和-0.13伏特的低set/reset操作電壓之[002]軸向AlN元件則可滿足低功率消耗和高穩定度的需求。
In recent years, the memory technology of semiconductor industry has been well developed. Resistance random access memory (RRAM) has potential to replace FLASH memory position in the nonvolatile memory (NVM). Because conductive bridge random access memory (CBRAM) has advantage of low power consumption and high memory window, finding for more suitable material for CBRAM is also critical issue to be investigated. Aluminum nitride (AlN), a metal nitride has many features in RRAM application and exhibits good insulator property without high process temperature. Nevertheless, the amorphous and [100] oriented AlN thin films applied for CBRAMs have rarely been investigated.
In this study, different orientation AlN thin films are fabricated by ratio-frequency (RF) sputtering system. In the first part of this thesis, the detailed investigation of material characteristics in all AlN thin films is presented. In the second part of this thesis, the proposed AlN thin films are applied to the solid-electrolyte of CBRAMs. The electrical characteristic, reliability test, and temperature-dependent test of the devices are also examined. For application requirements, the amorphous AlN device shows low bit error rate with a high memory window of 3.12 × 106. On the other hand, the requirement for low power consumption and high stability is satisfied from [002] oriented AlN device with a low set/reset voltage of 0.24 V/-0.13 V.
[1] Chen, An, “A review of emerging non-volatile memory (NVM) technologies and applications,” Solid-State Electronics, vol. 125, pp. 25-38, 2016
[2] International Technology Roadmap for Semiconductors (ITRS) Emerging Research Devices (ERD), 2010.
[3] Y. Xie, “Modeling, architecture, and applications for emerging memory technologies,” IEEE Des. Test Comput., vol. 28, pp. 44-50, 2011.
[4] M. F. Hung, Y. C. Wu, J. J. Chang, Chang Liao, and K. Shu, “Twin thin-film transistor nonvolatile memory with an Indium-Gallium-Zinc-Oxide Floating Gate,” IEEE Electron Device Lett., vol. 34, pp. 75-77, 2013.
[5] D. Jiang, M. Zhang, Z. Huo, Q. Wang, J. Liu, Z. Yu, X. Yang, Y. Wang, B. Zhang, J. Chen, and M. Liu, “A study of cycling induced degradation mechanisms in Si nanocrystal memory devices,” Nanotechnology, vol. 22, pp. 254009, 2011.
[6] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Park, and G. Stephenson, “Ferroelectric thin films: Review of materials, properties, and applications,” J. Appl. Phys., vol. 100, pp. 051606, 2006.
[7] A. Ney and J. S. Harris, “Reconfigurable magnetologic computing using the spin flop switching of a magnetic random access memory cell,” Appl. Phys. Lett., vol. 86, pp. 013502, 2005.
[8] T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett., vol. 88, pp. 122114, 2006.
[9] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal-Oxide RRAM,” Proc. IEEE, vol. 100, pp. 1951-1970, 2012.
[10] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” J. Appl. Phys., vol. 33, 2669, 1962.
[11] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Mater., vol. 6, pp. 833-840, 2007.
[12] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, pp. 2632-2663, 2009.
[13] Pan, F., S. Gao, C. Chen, C. Song and F. Zeng. “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
[14] M. J. M. and V. Zhirnov, Emerging memory technologies: Assessment and benchmarking.
[15] A. Calderoni, S. Sills, and N. Ramaswamy, “Performance comparison of O-based and Cu-based ReRAM for high-density applications,” in IEEE 6th International Memory Workshop (IMW), Taipei, pp. 1-4, 2014.
[16] Y. Hirose and H. Hirose, “Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films,” Appl. Phys. Lett., vol. 47, pp. 2767-2772, 1976.
[17] Valov, Ilia, Rainer Waser, John R. Jameson, and Michael N. Kozicki. “Electrochemical Metallization Memories—Fundamentals, Applications, Prospects.” Nanotechnology, vol. 22, no. 28, pp. 289502, 2011.
[18] Kim, Hee-Dong, Ho-Myoung An, Kyoung Chan Kim, Yujeong Seo, Ki-Hyun Nam, Hong-Bay Chung, Eui Bok Lee, and Tae Geun Kim. “Large Resistive-Switching Phenomena Observed in Ag/Si3N4/Al Memory Cells,” Semiconductor Science and Technology, vol. 25, no. 6, pp. 065002, 2010.
[19] Kim, Hee-Dong, Ho-Myoung An, and Tae Geun Kim. “Improved reliability of Au/Si3N4/Ti resistance switching memory cells due to a hydrogen post annealing treatment,” Appl. Phys. Lett., vol. 109, pp.109, 2011.
[20] C. Chen, Y. C. Yang, F. Zeng, and F. Pan. “Bipolar Resistive Switching in Cu/AlN/Pt Nonvolatile Memory Device,” Appl. Phys. Lett., vol. 97, pp. 083502, 2010.
[21] Kim, Hee-Dong, Ho-Myoung An, Yujeong Seo, and Tae Geun Kim. “Transparent Resistive Switching Memory Using ITO/AlN/ITO Capacitors,” IEEE Electron Device Letters, vol. 32, no. 8, pp. 1125-27, 2011.
[22] Hee-Dong Kim, Ho-Myoung An, Eui Bok Lee, and Tae Geun Kim. “Stable Bipolar Resistive Switching Characteristics and Resistive Switching Mechanisms Observed in Aluminum Nitride-Based ReRAM Devices,” IEEE Transactions on Electron Devices, vol. 58, pp. 3566-73, 2011.
[23] Chen, Chao, Shuang Gao, Guangsheng Tang, Cheng Song, Fei Zeng, and Feng Pan. “Cu-Embedded Aln-Based Nonpolar Nonvolatile Resistive Switching Memory,” IEEE Electron Device Letters, vol. 33, no. 12, pp. 1711-13, 2012.
[24] Chen, C., S. Gao, G. Tang, H. Fu, G. Wang, C. Song, F. Zeng, and F. Pan. “Effect of Electrode Materials on Aln-Based Bipolar and Complementary Resistive Switching,” ACS Appl Mater Interfaces, vol. 5, no. 5, pp. 1793-9, 2013.
[25] Zhang, Jian, Qilong Zhang, Hui Yang, Huayu Wu, Juehui Zhou, and Liang Hu. “Bipolar Resistive Switching Properties of Aln Films Deposited by Plasma-Enhanced Atomic Layer Deposition,” Applied Surface Science, vol. 315, pp. 110-15, 2014.
[26] Chen, Yiren, Hang Song, Hong Jiang, Zhiming Li, Zhiwei Zhang, Xiaojuan Sun, Dabing Li, and Guoqing Miao. “Reproducible Bipolar Resistive Switching in Entire Nitride AlN/n-GaN Metal-Insulator-Semiconductor Device and Its Mechanism,” Applied Physics Letters, vol.105, no. 19, pp. 193502, 2014.
[27] Zhang, Zhiping, Bin Gao, Zheng Fang, Xinpeng Wang, Yanzhe Tang, Joon Sohn, H. S. Philip Wong, S. Simon Wong, and Guo-Qiang Lo. “All-Metal-Nitride RRAM Devices,” IEEE Electron Device Letters, vol. 36, no. 1, pp. 29-31, 2015.
[28] Tseng, Zong-Liang, Lung-Chien Chen, Wan-Ying Li, and Sheng-Yuan Chu. “Resistive Switching Characteristics of Sputtered AlN Thin Films,” Ceramics International, vol. 42, no. 8, pp. 9496-503, 2016.
[29] Tsai, Tsung-Ling, Fa-Shen Jiang, Chia-Hua Ho, Chen-Hsi Lin, and Tseung-Yuen Tseng. “Enhanced Properties in Conductive-Bridge Resistive Switching Memory with Oxide-Nitride Bilayer Structure,” IEEE Electron Device Letters, vol. 37, no. 10, pp. 1284-87, 2016.
[30] Calderoni, Alessandro, Scott Sills, Chris Cardon, Emiliano Faraoni, and Nirmal Ramaswamy. “Engineering ReRAM for High-Density Applications,” Microelectronic Engineering, vol. 147, pp.145-150, 2015.
[31] Hao Cheng, Yong Sun, Peter Hing. “Microstructure Evolution of AlN Films Deposited under Various Pressures by RF Reactive Sputtering,” Surface and Coating Technology, vol. 166, pp. 231-236, 2003.
[32] Chakraborty, P., S. S. Mahato, T. K. Maiti, M. K. Bera, C. Mahata, S. K. Samanta, A. Biswas, and C. K. Maiti. “Performance Improvement of Flash Memory Using AlN as Charge-Trapping Layer,” Microelectronic Engineering, vol. 86, no. 3, pp. 299-302, 2009.
[33] Zuo, Chengjie, Nipun Sinha, and Gianluca Piazza. “Very High Frequency Channel-Select Mems Filters Based on Self-Coupled Piezoelectric Aln Contour-Mode Resonators,” Sensors and Actuators A: Physical, vol. 160, no. 1, pp. 132-40, 2010.
[34] Song, Xiufeng, Renli Fu, and Hong He. “Frequency Effects on the Dielectric Properties of Aln Film Deposited by Radio Frequency Reactive Magnetron Sputtering,” Microelectronic Engineering, vol. 86, no. 11, pp. 2217-21, 2009.
[35] Rainer Waser, and Masakazu Aono. “Nanoionics-Based Resistive Switching Memories,” Nature Materials, vol. 6, pp. 833-40, 2007.
[36] Cheng, Hsyi-En, Tien-Chai Lin, and Wen-Chien Chen. “Preparation of [002] oriented AlN thin films by mid frequency reactive sputtering technique,” Thin Solid Films, vol. 425, no. 1, pp. 85-89, 2003.
[37] Shiau, Jr-Shiang, Sanjaya Brahma, Chuan-Pu Liu, and Jow-Lay Huang. “Ultraviolet Photodetectors Based on Mgzno Thin Film Grown by Rf Magnetron Sputtering,” Thin Solid Films, vol. 620, pp. 170-74, 2016.
[38] Motamedi, P., and K. Cadien. “XPS Analysis of Aln Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition,” Applied Surface Science, vol. 315, pp.104-09, 2014.
[39] de Almeida, E. F., F. de Brito Mota, C. M. C. de Castilho, A. Kakanakova-Georgieva, and G. K. Gueorguiev. “Defects in Hexagonal-AlN Sheets by First-Principles Calculations,” The European Physical Journal B, vol. 85, no. 1, pp. 48, 2012.
[40] Huang, Yong, Zihan Shen, Ye Wu, Xiaoqiu Wang, Shufang Zhang, Xiaoqin Shi, and Haibo Zeng. “Amorphous Zno Based Resistive Random Access Memory,” RSC Adv., vol. 6, no. 22, pp. 17867-72, 2016.
[41] Liu, Qi, Weihua Guan, Shibing Long, Rui Jia, Ming Liu, and Junning Chen. “Resistive Switching Memory Effect of ZrO2 Films with Zr+ Implanted,” Applied Physics Letters, vol. 92, no. 1, pp. 012117, 2008.
[42] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng. “Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application,” Nano Letters, vol. 9, no. 4, pp. 1636-43, 2009.
[43] Zhou, G. D., Z. S. Lu, Y. Q. Yao, G. Wang, X. D. Yang, A. K. Zhou, P. Li, B. F. Ding, and Q. L. Song. “Mechanism for Bipolar Resistive Switching Memory Behaviors of a Self-Assembled Three-Dimensional MoS2 Microsphere Composed Active Layer,” Journal of Applied Physics, vol. 121, no. 15, pp. 155302, 2017.
[44] Guan, Weihua, et al. “On the resistive switching mechanisms of Cu/ZrO2: Cu/Pt,” Applied Physics Letters, vol. 93, no. 22, pp. 223506, 2008.
[45] Bid, Aveek, Achyut Bora, and A. K. Raychaudhuri. “Temperature Dependence of the Resistance of Metallic Nanowires of Diameter⩾15nm: Applicability of Bloch-Grüneisen Theorem.” Physical Review B, vol. 74, no. 3, pp. 035426 2006.
[46] Bittner, A., A. Ababneh, H. Seidel, and U. Schmid. “Influence of the Crystal Orientation on the Electrical Properties of AlN Thin Films on LTCC Substrates,” Applied Surface Science, vol. 257, no. 3, pp. 1088-91, 2010.
[47] Chen, Xiaorong, and Jie Feng. “Improvement in ROff/Ron Ratio and Reset Current Via Combining Compliance Current with Multilayer Structure in Tantalum Oxide-Based RRAM,” Applied Physics A, vol. 120, no. 1, pp. 67-73, 2015.