| 研究生: |
余俊穎 Yu, Jyun-Ying |
|---|---|
| 論文名稱: |
飛輪儲能系統於混合大型離岸式風場與海流場之功率潮流控制及穩定度分析研究 Power Flow Control and Stability Analysis of a Hybrid Large-Scale Offshore Wind Farm and Marine-Current Farm Using a Flywheel Energy-Storage System |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 203 |
| 中文關鍵詞: | 離岸式風場 、穩定度 、功率潮流 、飛輪儲能系統 、海流場 |
| 外文關鍵詞: | power flow, stability, flywheel energy-storage system (FESS), marine-current farm, offshore wind farm |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係以聚集等效離岸式風場與海流場經由傳輸線與市電並聯運轉,並比較該系統含與不含飛輪儲能系統之穩態及動態模擬結果。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立離岸式風場、海流場以及飛輪儲能系統等模型,並利用極點安置法針對飛輪儲能系統設計採用不同回授訊號之比例-積分-微分控制器。本論文於穩態特性方面,分析不同風速、流速及電網電壓等情況下對系統特性之影響,在動態模擬方面,完成了風速變動、轉矩干擾以及市電端三相短路故障等模擬結果。經由穩態及動態之模擬的結果得知,當所研究之系統中加入飛輪儲能系統及阻尼控制器後,可控制系統功率潮流以及有效改善系統於不同干擾下之穩定度特性。
Both steady-state and dynamic analysis results of an equivalent aggregated hybrid offshore wind farm and marine-current farm connected to utility grid through a transmission line are presented in this thesis. A flywheel energy-storage system (FESS) connected to the common AC bus of the studied system is proposed to control the power flow and enhance stability. The q-d axis equivalent-circuit model is developed to establish the models for offshore wind farm, marine-current farm, and the FESS under three-phase balanced loading conditions. A proportional-integral- derivative (PID) type damping controller using different feedback signals is designed for the FESS using pole-assignment approach based on modal control theory. Steady-state characteristics of this studied system under different values of wind speed, marine-current speed, grid voltage, etc. are examined. Dynamic simulations of the studied system subject to various values of wind speed, torque disturbance, etc. as well as a three-phase fault are also carried out. It can be concluded from the simulation results that the proposed FESS joined with the designed PID damping controller can effectively control the power flow and improve the stability of the studied system under various disturbance conditions.
參考文獻
[1] http://www.epochtimes.com/b5/7/9/7/n1827012.htm 2009年5月20日。
[2] 蘇達貞,科學發展月刊383期,2009年5月20日。http://203.145.193.110/NSC_INDEX/Journal/EJ0001/9311/9311-04.pdf。
[3] 徐泊樺與顏志偉,物理雙月刊廿九卷三期,2009年5月20日。http://psroc.phys.ntu.edu.tw/bimonth/download.php?d=1&cpid=157&did=10。
[4] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. IEEE Power Tech conference, June 23-26, 2003.
[5] H.-S. Ko, G.-G. Yoon, and W.-P. Hong, “Active use of DFIG-based variable-speed wind-turbine for voltage regulation at a remote location,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1916-1925, November 2007.
[6] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, September 2007.
[7] D. Aguglia, P. Viarouge, R. Wamkeue, and J. Cros, “Analytical determination of steady-state converter control laws for wind turbines equipped with doubly fed induction generators,” IET Renewable Power Generation, vol. 2, no. 1, pp. 16-25, 2008.
[8] J. Zhang, Z. Chen, L. Cai, and Y. Zhao, “Flywheel energy storage system design for distribution network,” in Proc. IEEE Power Engineering Society Winter Meeting, vol. 4, pp. 2619-2623, January 23-27, 2000.
[9] R. Hebner, J. Beno, and A. Walls, “Flywheel batteries come around again,” IEEE Spectrum, vol. 39, no. 4, pp. 46-51, April 2002.
[10] C. Chompoo-inwai, W.-J. Lee, P. Fuangfoo, M. Williams, and J. R. Liao, “System impact study for the interconnection of wind generation and utility system,” IEEE Trans. Industry Applications, vo1. 41, no. 1, pp. 163-168, February 2005.
[11] L. Myers and A. S. Bahaj, “Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race,” Renewable Energy, vol. 30, no. 11, pp. 1713-1731, September 2005.
[12] C. Chompoo-inwai, C. Yingvivatanapong, K. Methaprayoon, and W.-J. Lee, “Reactive compensation techniques to improve the ride-through capability of wind turbine during disturbance,” IEEE Trans. Industry Applications, vol. 41, no. 3, pp. 666-672, May/June 2005.
[13] I. G. Bryden and S. J. Couch, “ME1-Marine energy extraction: Tidal resource analysis,” Renewable Energy, vol. 31, no. 2, pp. 133-139, February 2006.
[14] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1086-1093, June 2006.
[15] R. de Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. da Silva Neto, R. M. Stephan, W. I. Suemitsu, and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Applied Superconductivity, vol. 17, no. 2, pp. 2154-2157, June 2007.
[16] A. P. Grilo, A. d. A. Mota, L. T. M. Mota, and W. Freitas, “An analytical method for analysis of large-disturbance stability of induction generators,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1861-1868, November 2007.
[17] D. Andersson, A. Petersson, E. Agneholm, and D. Karlsson, “Kriegers Flake 640 MW off-shore wind power grid connection - A real project case study,” IEEE Trans. Energy Conversion, vo1. 22, no. 1, pp. 79-85, March 2007.
[18] R. F. Thelen, A. Gattozzi, D. Wardell, and A. Williams, “A 2-MW motor and ARCP drive for high-speed flywheel,” in Proc. IEEE Applied Power Electronics Conference, pp. 1690-1694, February /March 2007.
[19] A. S. Bahaj, W. M. J. Batten, and G. Mccann, “Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines,” Renewable Energy, vol. 32, no. 15, pp. 2479-2490, December 2007.
[20] W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, “The prediction of the hydrodynamic performance of marine current turbines,” Renewable Energy, vol. 33, no. 5, pp. 1085-1096, May 2008.
[21] S.-S. Chen, L. Wang, W.-J. Lee, and Z. Chen, “Power flow control and damping enhancement of large wind farm using a superconducting magnetic energy storage unit,” IET Renewable Power Generation, vol. 3, no. 1, pp. 23-38, 2009.
[22] 劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,2005年6月。
[23] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
[24] 黃偉,虛功補償元件應用於風場之特性分析,國立成功大學電機工程學系碩士論文,2007年6月。
[25] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,2006年6月。
[26] 盧志榮,飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究,國立成功大學電機工程學系碩士論文,2008年6月。
[27] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
[28] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
[29] 劉建宏,海流發電系統之特性分析,國立成功大學電機工程學系碩士論文,2008年6月。
[30] 陳翔雄,利用超導儲能系統於大型離岸式風場之動態穩定度改善研究,國立成功大學電機工程學系博士論文,2009年3月。
[31] K. Dartawan and C. S. Pierre, “Proposed methods to determine fault point X/R ratio for breaker evaluation,” IEEE Trans. Industry Applicatons, vol. 40, no. 4, pp. 941-949, July/August 2004.
[32] A. Reidy and R. Watson, “Comparison of VSC based HVDC and HVAC interconnections to a large offshore wind farm,” in Proc. IEEE Power Engineering Society General Meeting, vol. 1, pp. 1-8, June 12-16, 2005.