簡易檢索 / 詳目顯示

研究生: 黃志宏
Huang, Zhi-Hong
論文名稱: 設計混合式儲能系統之自適應模糊邏輯控制器以達成混合太陽/風能微電網系統的功率平滑
Design of an Adaptive Fuzzy Logic Controller for a Hybrid Energy-storage System to Achieve Power Smooth of a Hybrid PV/Wind based Microgrid System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 140
中文關鍵詞: 風場太陽能場混合式儲能系統全釩氧化還原液流電池超級電容器模糊邏輯功率平滑多機電力系統
外文關鍵詞: photovoltaic farm, wind farm, hybrid energy-storage system, vanadium redox flow battery, supercapacitor, fuzzy logic, power smoothing, multi-machine power system
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種用於管理全釩氧化還原液流電池功率和超級電容器功率之自適應模糊控制器,搭配所設計之最佳混合式儲能系統的容量,整合到太陽能場和風場之微電網,再併入到IEEE 14匯流排之多機電力系統。本論文主要研究內容包括:(1)設計用於混合式儲能系統的自適應模糊邏輯控制器、(2)設計最佳混合式儲能系統的容量。本論文使用統計機率方法決定混合式儲能系統之額定功率以及容量大小,並設計分配混合式儲能系統功率之自適應模糊邏輯控制器,以有效利用兩個儲能系統各自的特性,並且分別針對系統的不同研究案例進行了分析,探討該系統在所提出的自適應模糊邏輯控制器與所選定的最佳混合式儲能系統的容量條件下,對於平滑電網電力方面之成效。

    This thesis proposes of an adaptive fuzzy controller for power management of a hybrid energy-storage system (HESS) consisting of a vanadium redox flow battery (VRFB) and a supercapacitor. The studied system is a hybrid wind-PV farm connected to the IEEE 14-bus multi-machine power system with the optimal designed capacity for the proposed HESS. The main research contents include: (1) the design of an adaptive fuzzy logic controller for the HESS, and (2) the design of the optimal capacity for the HESS. A probability approach is used to determine the rated power and capacity of the HESS, and an adaptive fuzzy logic controller for power distribution of the HESS is designed to effectivily utilize its individual characteristic. Different cases of the studied system are analyzed to investigate the effects of the selected capacity joined with the proposed adaptive fuzzy logic controller on smoothing grid power for the studied system.

    摘要 i ABSTRACT ii 致謝 x 目錄 xi 表目錄 xv 圖目錄 xvii 符號說明 xxi 第一章 緒論 1 1-1 研究動機 1 1-2 相關文獻回顧 3 1-3 本論文的貢獻 7 1-4 研究內容概述 7 第二章 研究系統架構與數學模型 9 2-1 前言 9 2-2 太陽能發電系統 12 2-2-1 太陽能電池數學模型 12 2-2-2 太陽能陣列數學模型 14 2-2-3 直流對直流升壓轉換器數學模型 15 2-2-4 最大功率點追蹤 16 2-3 風力發電系統 18 2-3-1 風力渦輪機之數學模型 19 2-3-2 旋角控制器之數學模型 20 2-3-3 等效質量-彈簧-阻尼系統數學模型 21 2-3-4 永磁同步發電機之數學模型 23 2-3-5 交流對直流電壓源轉換器數學模型 26 2-4 雙向直流對直流轉換器數學模型 27 2-5 全釩氧化還原液流電池數學模型 30 2-6 超級電容器之數學模型 34 2-7 直流負載轉換器之數學模型 35 2-8 雙向直流對交流電壓源換流器數學模型 37 2-9 同步發電機與同步調相機之數學模型 39 2-9-1 同步發電機與同步調相機之數學模型 39 2-9-2 激磁系統數學模型 42 2-9-3 蒸氣渦輪機轉矩之數學模型 44 2-9-4 調速機之數學模型 45 2-9-5 負載與傳輸線網路之數學模型 46 第三章 自適應模糊邏輯控制器設計與最佳容量選配 48 3-1 前言 48 3-2 混合式儲能系統之自適應模糊邏輯控制器設計 49 3-2-1 模糊邏輯 49 3-2-2 自適應模糊邏輯控制器設計 50 3-2-3 混合式儲能系統控制方法 54 3-3 混合式儲能系統功率容量之設計 57 3-3-1 核平滑密度估計應用 60 3-3-2 累積密度函數及混合式儲能系統額定功率選擇 62 3-3-3 混合式儲能系統容量設計 64 3-4 全釩氧化還原液流電池實際測量分析 65 3-4-1 全釩氧化還原液流電池實體充放電平台 66 3-4-2 全釩氧化還原液流電池之實測與模擬數據比對 68 3-5 混合式儲能系統參數設計 71 3-5-1 混合式儲能系統容量分配 72 3-5-2 全釩氧化還原液流電池系統之參數設計 73 3-5-3 超級電容器系統之參數設計 75 第四章 模擬分析 78 4-1 前言 78 4-2 穩態工作點分析 78 4-3 動態分析 83 4-3-1 超級電容器功率容量變動之動態分析 83 4-3-2 混合式儲能系統容量變動之動態分析 89 4-3-3 日射量變動之動態分析 95 4-3-4 風速變動之動態分析 100 4-3-5 直流負載變動之動態分析 106 4-4 系統之暫態分析 112 4-4-1 太陽能場跳脫 113 4-4-2 風場跳脫 118 第五章 結論與未來研究方向 124 5-1 結論 124 5-2 未來研究方向 125 參考文獻 127 附錄:本論文研究系統架構所使用之參數 134 作者簡介 139 Publication List 140

    [1] 綠能科技產業推動中心。 [Online]. Available: https://reurl.cc/rD6Lox, retrieved date: May 1, 2022.
    [2] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the applications potential in power system operation,” Applied Energy, vol. 137, pp. 511-536, Jan. 2015.
    [3] A. A. A. Alahmadi, Y. Belkhier, N. Ullah, H. Abeida, M. S. Soliman, and Y. S. H. Khraisat, “Hybrid wind/pv/battery energy management-based intelligent non-integer control for smart dc-microgrid of smart university,” IEEE Access, vol. 9, pp. 98948-98961, Jul. 2021.
    [4] U. Manandhar, N. R. Tummuru, S. K. Kollimalla, A. Ukil, G. H. Beng, and K. Chaudhari, “Validation of faster joint control strategy for battery- and supercapacitor-based energy storage system,” IEEE Trans. Industrial Electronics, vol. 65, no. 4, pp. 3286-3295, Sep. 2017.
    [5] D. B. W. Abeywardana, B. Hredzak, and V. G. Agelidis, “A fixed-frequency sliding mode controller for a boost-inverter-based battery-supercapacitor hybrid energy storage system,” IEEE Trans. Power Electronics, vol. 32, no. 1, pp. 668-680, Jan. 2017.
    [6] S. K. Kollimalla, M. K. Mishra, A. Ukil, and H. B. Gooi, “DC grid voltage regulation using new HESS control strategy,” IEEE Trans. Sustainable Energy, vol. 8, no. 2, pp. 772-781, Apr. 2017.
    [7] G. Wang, M. Ciobotaru, and V. G. Agelidis, “Power smoothing of large solar PV plant using hybrid energy storage,” IEEE Trans. Sustainable Energy, vol. 5, no. 3, pp. 834-842, Mar. 2014.
    [8] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Feb. 2010.
    [9] S. Hazra and S. Bhattacharya, “Hybrid energy storage system comprising of battery and ultra-capacitor for smoothing of oscillating wave energy,” in Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, Sep. 18-22, 2016, pp. 1-8.
    [10] L. Pan, J. Gu, J. Zhu, and T. Qiu, “Integrated control of smoothing power fluctuations and peak shaving in wind/PV/energy storage system,” in Proc. 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, Aug. 27-28, 2016, pp. 586-591.
    [11] H. S. Qazi, N. Liu, and A. Ali, “Power system frequency regulation using hybrid electrical energy storage system,” in Proc. 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC), Beijing, China, Nov. 4-6, 2018, pp. 377-381.
    [12] X. Wang and M. Yue, “Capacity specification for hybrid energy storage system to accommodate fast PV fluctuations,” Information and Control, Denver, CO, USA, Jul. 26-30, 2015, pp. 1-5.
    [13] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, Jun. 1965.
    [14] F. Wu, P. Ju, X.-P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” Proceedings of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
    [15] S. Heier, Grid Integration of Wind Energy Conversion Systems, Chichester, UK: John Wiley & Son, 1998.
    [16] D. Saidani, O. Hasnaoui, and R. Dhifaoui, “Control of double fed induction generator in WECS,” in Proc. The 2nd International Conference on Power Engineering and Renewable Energy (ICPERE) 2014, Bali, Indonesia, Dec. 9-11, 2014, pp. 25-30.
    [17] S. Simani, “Overview of modelling and advanced control strategies for wind turbine systems,” Energies, vol. 8, pp. 13395-13418, Nov. 2015.
    [18] J. Yan, H. Lin, Y. Feng, X. Guo, Y. Huang, and Z. Q. Zhu, “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system,” IET Renewable Power Generation, vol. 7, no. 1, pp. 28-35, Feb. 2013.
    [19] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan./Feb. 2010.
    [20] M. A. Abdullah, A. H. M. Yatim, and C. W. Tan, “A study of maximum power point tracking algorithms for wind energy system,” in Proc. 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, Jun. 27-29, 2011, pp. 321-326.
    [21] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
    [22] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
    [23] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I: Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [24] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Oct. 2010.
    [25] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
    [26] M. S. Ngan and C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone photovoltaic systems,” in Proc. 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Skudai, Johor Bahru, Malaysia, Apr. 18-19, 2011, pp. 22-27.
    [27] C. Blanc and A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery,” in Proc. 2008 IEEE International Conference on Sustainable Energy Technologies (ICSRET), Singapore, Nov. 24-27, 2008, pp. 696-701.
    [28] J. A. Chahwan, C. Abbey, and G. Joos, “VRFB modelling for the study of output terminal voltages, internal losses and performance,” in Proc. 2007 IEEE Canada Electrical Power Conference, Montreal, Quebec, Canada, Oct. 25-26, 2007, pp. 387-392.
    [29] J. A. Chahwan, “Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications,” M.S. Thesis, McGill University, Montreal, Quebec, Canada, 2007.
    [30] R. D‘Agostino, L. Baumann, A. Damiano, and E. Boggasch, “A vanadium-redox-flow-battery model for evaluation of distributed storage implementation in residential energy systems,” IEEE Trans. Energy Conversion, vol. 30, no. 2, pp. 421-430, Jun. 2015.
    [31] L. Shi and M. L. Crow, “Comparison of ultracapacitor electric circuit models,” in Proc. 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, Jul. 20-24, 2008, pp. 1-6.
    [32] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
    [33] P. Demetriou, M. Asprou, J. Quiros-Tortos, and E. Kyriakides, “Dynamic IEEE test systems for transient analysis,” IEEE Systems Journal, vol. 11, no. 4, pp. 2108-2117, Jul. 2015.
    [34] N. Hashim, N. Hamzah, M. F. A. Latip, and A. A. Sallehhudin, “Transient stability analysis of the IEEE 14-Bus test system using dynamic computation for power systems (DCPS),” in Proc. 2012 Third International Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, Feb. 8-10, 2012, pp. 1-8.
    [35] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [36] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    [37] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
    [38] X. Xu, R. M. Mathur, J. Jiang, G. J. Rogers, and P. Kundur, “Modeling of generators and their controls in power system simulations using singular perturbations,” IEEE Trans. Power Systems, vol. 13, no. 1, pp. 109-114, Feb. 1998.
    [39] IEEE, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2016, May 2016.
    [40] Y. Liu, S. Yang, S. Zhang, and F. Z. Peng, “Comparison of synchronous condenser and STATCOM for inertial response support,” in Proc. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, Sep. 14-18, 2014, pp. 2684-2690.
    [41] Y. Liu, Y. Yu, C. Wang, Z. Zou, C. Jiang, C. Sun, and J. Yu, “Review on synchronous condenser modeling study,” in Proc. 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, Sep. 17-19, 2018, pp. 1-6.
    [42] W. Li and G. Joos, “Comparison of energy storage system technologies and configurations in a wind farm,” in Proc. 2007 IEEE Power Electronic Specialists Conference, Orlando, FL, USA, Jun. 17-21, 2007, pp. 1280-1285.
    [43] 中央氣象局觀測資料查詢系統。[Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, retrieved date: May 1, 2022.
    [44] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合式可再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
    [45] 林志昕,整合採用線性永磁發電機與採用感應發電機之波浪場之研究與分析,國立成功大學電機工程學系碩士論文,2010年7月。
    [46] 曾喜彥,採用全釩氧化還原液流電池於市電併聯型混合式可再生能源發電系統之性能改善,國立成功大學電機工程學系碩士論文,2019年7月。
    [47] 彭賢倫,整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2019年7月。
    [48] 柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
    [49] 模糊理論。[Online]. Available: https://reurl.cc/1ZXMMD, retrieved date: May 1, 2022.
    [50] 王醴、黃志宏、曾慶文、高浩瑜、林裕順(民110)。液流電池儲能系統在風力發電系統之電力整合關鍵技術研究。行政院原子能委員會核能研究所委託研究計畫成果報告(編號:PG11004-0173),未出版。

    無法下載圖示 校內:2027-07-11公開
    校外:2027-07-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE