| 研究生: |
許家瑞 Hsu, Chia-Jui |
|---|---|
| 論文名稱: |
具能量緩衝級與最大功率點追蹤電路之光能獵能器設計 Design of Photovoltaic Energy Harvester with Maximum Power Point Tracking Circuit and Energy Buffer Stage |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 能量緩衝級 、擾動觀察法 、升壓型轉換器 、光能獵能器 |
| 外文關鍵詞: | Energy buffer stage, Time-multiplex control, Perturb and observe, Boost converter, Photovoltaic energy harvester |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於能源危機及環境汙染的問題日益嚴重,環境永續的觀念也逐漸受到重視,光能、熱能、動能等等綠色能源遂成為趨勢,而藉由環境中的能量(如太陽能、熱能與溫度差)並轉換成電能,稱之為獵能。本研究提出一個具有能量緩衝級與最大功率點追蹤電路的光能獵能器,確保太陽能電池能操作於其最大功率點,並且能妥善分配能量於負載端與能量緩衝級,當太陽能電池所提供之能量充足時,可將能量儲存於能量緩衝級,而在太陽能電池所提供之能量小於負載所需能量時,則可以使用儲存於能量緩衝級之能量作為輔助,提高供電之穩定度。另外,為了在低功率下能有好的轉換效率,轉換器操作於非連續導通模式(DCM),控制方法使用脈波頻率調變(PFM)進行控制,並結合分時多工法(TMC)與能量分佈法(PDC)來分配負載端與能量緩衝級的能量。
本晶片使用台灣積體電路公司(TSMC)提供之0.18μm 1P6M Mixed-signal Standard CMOS 製程,晶片總面積為1.079 mm2,並採用DIP 40 S/B進行封裝。所測得之最佳追蹤效率為99.62%,太陽能電池的最佳轉換效率為95.77%,太陽能電池的最佳總效率為95.41%,太陽能電池與儲能端共同提供負載端的最佳轉換效率為95.48%。為了增加供應電源的穩定性,加入能量緩衝級輔助後,在最低光照(IPH=200μA)時系統最高可抽載至410μA,而在最高光照(IPH=3mA)時系統最高可抽載至3.8mA。
In this thesis, a boost dc-dc converter for photovoltaic (PV) energy harvester with energy buffer stage and maximum power point tracking (MPPT) circuit is proposed. A perturb and observe method (P&O) is used to track the maximum power point of the PV cell. The control method combining time-multiplexing control (TMC) and power-distributive control (PDC) is used to control single-inductor dual-input dual output (SIDIDO) system, properly distributing energy form harvester, storage and output.
The proposed chip was fabricated by TSMC 0.18μm 1P6M mixed-signal standard CMOS process, and the chip area is 1.079 mm2. According to measurement results, the peak tracking efficiency is 99.62 %, the peak conversion efficiency for input source to output is 95.77%, the peak total efficiency for input source to output is 95.41%, and the peak conversion efficiency for input source and energy buffer stage to output is 95.48%. Adding the energy buffer stage, the maximum load current for IPH=0.2mA is 410μA, and the maximum load current for IPH=3.0mA is 3.8mA.
[1] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart objects as building blocks for the internet of things”, IEEE Internet Comput., vol. 14, no. 1, pp. 44-51, 2010.
[2] R. D. Prabha, G. A. Rincón-Mora, and S. Kim, “Harvesting circuits for miniaturized photovoltaic cells ,” in Proc. IEEE Int. Symp. On Circuit and Syst., May 2011, pp. 309–312.
[3] R. D. Prabha and G. A. Rincón-Mora, “How to Design Battery-Assisted Photovoltaic Switched-Inductor CMOS Charger-Supplies,” IEEE International Symposium on Circuits and Systems (ISCAS)
[4] A. H. ALQahtani, M. S. Abuhamdeh, and Y. M. Alsmadi, “A Simplified and Comprehensive Approach to Characterize Photovoltaic System Performance,” in Proc. IEEE Energytech conf., May 2012, pp. 1–6.
[5] W. S. Wang, T. O’Donnel, L. Ribetto, B. O’Flynn, M.Hayes, and C. O’Mathuna, “Energy harvesting embedded wireless sensor system for building environment applications,” in Int. Conf. Wireless VITAE, May 2009, pp. 36–41.
[6] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
[7] S. Agarwal and M. Jamil, “A Comparison of Photovoltaic Maximum Power Point Techniques,” in Proc. 2012 Annu. IEEE, India conf., Dec. 2015, pp. 1–6.
[8] J. Z. Yan, C. L. Wei, “Design of Photovoltaic Energy Harvester with Maximum
Power Point Tracking Circuit and Sleep Mechanism,” pp.19, Nov. 2018.
[9] Y. K. Ramadass and A. P. Chandrakasan “A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage, ” IEEE J. Solid-State Circuits, vol. 46, no. 1 , Jan. 2011.
[10] S. Mondal and R. Paily “An Efficient On-Chip Switched-Capacitor-Based Power Converter for a Microscale Energy Transducer, ” IEEE Trans. Circuits Syst. vol. 63, no. 3 ,March 2016.
[11] H. Shao, C. Y. Tsui and W. H. Ki, “A Novel Single-Inductor Dual-Input Dual-Output DC–DC Converter With PWM Control for Solar Energy Harvesting System, ” IEEE Trans. On VLSI Systems, vol. 22, issue: 8, Aug. 2014
[12] T. Li, "Single inductor multiple output boost regulator," U.S. Patent 6,075,295, Jun. 13, 2000
[13] J. Park, M. G. Jeong, J. G. Kang, “Solar Energy-Harvesting Buck–Boost Converter With Battery-Charging and Battery-Assisted Modes, ” IEEE Trans. Ind. Electron., vol. 68, no. 3, March 2021.
[14] R. D. Prabha and G. A. Rincón-Mora, “0.18-μm light-harvesting battery-assisted charger–supply CMOS system,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2950–2958, Apr. 2016.
[15] R. D. Prabha and G. A. Rincón-Mora, “Light-Harvesting CMOS Power-Supply System for 0–10-mW Wireless Microsensors,” IEEE Sensors Journal, vol.19, no. 2, Jan. 2019.
[16] C. J. Huang, Y. S. Ma, W. H. Yang and Y. T. Lin “A 99.2% Tracking Accuracy Single-Inductor Quadruple-Input-Quadruple-Output Buck-Boost Converter Topology with Periodical Interval Perturbation and Observation MPPT,” IEEE Asian Solid-State Circuits Conference (A-SSCC), Dec. 2018.
[17] M. H. Huang, H. W .Huang, J. Y. Peng and M. C. Lee “Single-inductor dual-output (SIDO) DC-DC converters for minimized cross regulation and high efficiency in SoC supplying systems, ” 50th Midwest Symposium on Circuits and Systems, Aug. 2007.
[18] Y. Qian, H. Zhang, Y. Chen, Y. Qin, D. Lu and Z. Hong “A SIDIDO DC–DC Converter With Dual-Mode and Programmable-Capacitor-Array MPPT Control for Thermoelectric Energy Harvesting, ” IEEE Trans. Circuits Syst. vol. 64, no. 8 ,Aug 2017.
[19] C. H. Huang, “Design of a Mixed-Ripple Adaptive On-Time Boost DC-DC Converter,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jan. 2017.
[20] P.-H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and Vth-tuned oscillator with fixed charge programming,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1252–1260, May 2012.
校內:2026-02-01公開