簡易檢索 / 詳目顯示

研究生: 盧俊谷
Lu, Chun-Ku
論文名稱: 高分子改質橡膠混凝土之性能研究
Improving Properties of Rubcrete by Modifying Waste Tire Surfaces with Polymer
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 134
中文關鍵詞: 橡膠混凝土聚丙烯醯胺聚乙烯醇抗蝕性能
外文關鍵詞: Rubcrete, Polyacrylamide, Polyvinylalcohol, Anti-corrosion
相關次數: 點閱:53下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢輪胎的處理是目前世界上急需面對的環境問題;若能將其回收再利用於水泥製品中,不但能改良混凝土之性質,亦能達到環境保護及資源回收再利用之功效。橡膠混凝土為混凝土與橡膠材料結合而成之複合材料,但橡膠與水泥材料各自為疏水性及親水性材料,混合應用時常會發生許多界面上的問題,導致其使用性能降低。有鑑於此,本研究分別使用聚丙烯醯胺(PAM)及聚乙烯醇(PVA)兩種高分子改質劑,改質橡膠表面,藉由改質劑中高分子親水基來改質橡膠表面成親水性,進而提升複合材料之界面性能。研究中,巨觀方面透過改質橡膠表面接觸角試驗、水泥砂漿流度試驗、水泥漿體初終凝試驗、抗壓強度試驗、抗彎強度試驗及耐侵蝕試驗等檢驗物理及機械性質性能;微觀方面則應用傅利葉紅外光譜分析儀(FT-IR)、光學顯微鏡(OM)及掃描式電子顯微鏡(SEM),來探討材料界面結合機制及材料機械性能之相關性。研究結果顯示,水泥混凝土添加橡膠可增加強其工作性,且橡膠用PAM及PVA改質後可提高其表面親水性能,以助橡膠表面水泥之水化,並促進與水泥材料之良好結合,進而提升混凝土的機械強度及抗蝕性能。改質後較改質前之橡膠混凝土約可增加14%~20%之抗壓強度、18%~27%之抗彎強度及增加1~5個耐侵蝕循環;微觀性質分析方面,藉由FT-IR、OM及SEM,可量測表面微觀結構之變化及橡膠表面之水泥水化情形以闡明其作用機理。

    The waste tires can be added to concrete to form a composite material, known as “Rubcrete”. However, addition of rubber crumbs leads to degradation in the physical properties of the concrete. In this study, by treating the tire crumbs with Polyacrylamide (PAM) and Polyvinylalcohol (PVA), we have improved the properties of the rubberized mortar, “Rubcrete”. Specifically, the compressive and flexural strengths of the specimen at 56 days were improved up to 14~20% and 18~27%, respectively. The anti-corrosion property of this new rubberized mortar was dramatically superior to that of the original mortar, and the test cycles were increased from 1 to 5 in the anti-corrosion test. The addition of rubber also turned the crack from fragility crack to ductility crack. To examine the impacts of PAM and PVA modification on the microscopic level, the specimens with and without PAM and PVA modification, were observed with SEM. Experimental results showed that PAM and PVA treatment of rubber crumbs is an effective means to improve the mechanical properties of the rubberized mortar and lends itself to possible commercial applications.

    目次 摘要 I Abstract II 誌謝 III 表目次 VIII 圖目次 X 第ㄧ章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究概述 4 1-4 研究規劃 5 第二章 文獻回顧 8 2-1 水泥組成與水化產物 8 2-1-1 水泥製造之組成 10 2-1-2 水泥之水化反應作用 13 2-1-3 水化產物之結構及其性質 16 2-1-4 孔隙及其結構 17 2-2 輪胎組成與處理現況 20 2-2-1 廢輪胎的回收問題及處理方法 21 2-2-2 廢輪胎成份及橡膠屑顆粒分類 25 2-2-3 橡膠之一般特性 31 2-3 骨材對水泥砂漿的影響 33 2-4 廢棄橡膠材添加至水泥混凝土製品之研究 35 2-4-1 新拌橡膠混凝土性質 36 2-4-2 橡膠混凝土材料力學性能 37 2-5 高分子應用於混凝土材料中之影響 42 2-6 添加其他材料對水泥界面之影響 44 2-7 界面過度區理論基礎 47 2-8 橡膠界面改質與混凝土之影響 51 2-9 橡膠混凝土用途 55 第三章 材料與方法 58 3-1 試驗材料及樣品準備 58 3-2 儀器設備 64 3-2-1 物理及機械性質試驗 64 3-2-2 微觀性質試驗 70 3-3 實驗方法 73 3-3-1 實驗設計 73 3-3-2 物理性質及機械性質 75 3-3-3 耐侵蝕能力試驗 82 3-4 微觀性質試驗 83 3-4-1 紅外線光譜分析(FT-IR)試驗 83 3-4-2 光學顯微鏡試驗 84 3-4-3 掃描式電子顯微鏡 85 第四章 結果與討論 86 4-1 物理與機械強度試驗結果分析 86 4-1-1 接觸角試驗 86 4-1-2 材料基本物性試驗結果 89 4-1-3 水泥砂漿流度試驗 90 4-1-4 水泥砂漿抗壓強度試驗結果 93 4-1-5 水泥砂漿抗彎強度試驗結果 97 4-1-6 耐久性及抗侵蝕能力試驗結果 102 4-2 微觀試驗結果分析 105 4-2-1 紅外線光譜分析 105 4-2-2 OM顯微鏡分析 116 4-2-3 掃描式電子顯微鏡試驗分析 119 4-3 討論 123 4-3-1 物理與機械強度試驗討論 123 4-3-2 微觀試驗討論 125 第五章 結論與建議 126 5-1 結論 126 5-2 建議 128 參考文獻 129

    參考文獻
    1.Afridi, M.U.K., Y. Ohama, M. Zafar. Iqbal, K. Demura (1995) Water Retention and Adhesion of Powdered and Aqueous Polymer-Modified Mortars, Cement and Concrete Composites Volume: 17, Issue: 2, 113-118.
    2.Al-Akhras, N.M., Smadi, M.M., 2002. Properties of tire rubber ash mortar. In: Dhir, R.K. et al. (Ed.), Proceedings of the International Conference on Sustainable Concrete Construction, University of Dundee, Scotland, UK, pp. 805–814.
    3.Ali, N.A., A.D. Amos, and M. Roberts (1993) Use of ground rubber tires in portland cement concrete., Proc. Int. Conf. Concrete 2000, 379-390.
    4.Barret, P.; D. J. Bertrandie, Chim. PHys. (1986) Fundamental hydration kinetic features of the major cement constituents: C3S and b-C2S, Volume:83, 765-775.
    5.Biel, T.D., Lee, H. (1996) Magnesium oxychloride cement concrete with recycled tire rubber. Transportation Research Record No. 1561, Transportation Research Board, Washington, DC, 6–12
    6.Brandt, A.M. and M. Marks (1996) Optimization of the Material Structure and Composition of Cement Based Composites, Cement and Concrete Composites Volume: 18, Issue: 4, 271-279.
    7.Buekett, J. (1998) International Admixture Standards, Cement and Concrete Composites Volume: 20, Issue: 2-3, 137-140.
    8.Carlos N., L.M. Sanchez, E. Fuente, Angeles Blanco, Julio Tijero (2006) Polyacrylamide induced flocculation of a cement suspension, Chemical Engineering Science Volume: 61, 2522 – 2532
    9.Chou, L.H. , Lu C.K. , Chang J.R. &Lee M.T. (2007) : Use of Waste Rubber as Concrete Additives., Waste Management & Research, 25, 65-76.
    10.Eldin, N.N. and A. B. Senouci, (1993), Use of Scrap Tires in Road Construction, J. Constr. Eng., Vol.118, No.3, 1217-1232.
    11.Fattuhi, N.I., and L. A. Clark (1996) Cement-based materials containing shredded scrap truck tyre rubber, Construction and Building Materials Volume: 10, Issue:4, 229-236.
    12.Fedroff, D., Ahmad, S., Savas, B.Z. (1996) Mechanical properties of concrete with ground waste tire rubber. Transportation Research Board, Report No. 1532, Transportation Research Board, Washington, DC, 66–72
    13.Figovsky, O., D. Beilin, N. Blank, J. Potapov, V. Chernyshev (1996) Development of Polymer Concrete with Polybutadiene Matrix, Cement and Concrete Composites Volume: 18, Issue: 6, 437-444.
    14.Gao J.M. , C.X. Qian B. Wang, K. Morino (2002) Experimental study on properties of polymer-modified cement mortars with silica fume, Cement and Concrete Research Volume: 32, Issue: 1, January, 41-45.
    15.Hernandez-Olivares F., Barluenga G., Bollati M.& Witoszek (2002) : Static and dynamic behavior of recycled tire rubber-filled concrete, Cement and Concrete Research, 32, 1587-1596.
    16.Hughes, B.P. and B. Roller Lubis (1996) Compacted Sheets of Polymer Modified Mortar, Cement and Concrete Composites Volume: 18, Issue: 1, 41-46.
    17.Huynh, H. and D. Raghavan (1997) Durability of simulated shredded rubber tire in highly alkaline environments, Advanced Cement Based Materials Volume: 6, Issue: 3-4, 138-143.
    18.Khatib, Z. K., F.M. Bayomy, (1999) Rubberized Portland cement concrete. ASCE Journal of Materials in Civil Engineering 11 (3) 206-213.
    19.Morlat, R., P. Godard, and Y., Orange Bomal (1999) G.Dynamic mechanical thermoanalysis of latexes in cement paste, Cement and Concrete Research Volume: 29, Issue: 6, 847-853.
    20.Naik, T.R. & Sigh S.S. (1991) Utilization of discarded tires as construction materials for transportation facilities. Report No. CBU-1991-02, UWM Center for By-products Utilization, University of Wisconsin-Milwaukee.
    21.Neubauer, C.M., M. Yang and H.M. Jennings (1998) InteRPAMarticle Potential and Sedimentation Behavior of Cement Suspensions: Effects of Admixtures, Advanced Cement Based Materials Volume: 8, Issue:1 , 17-27.
    22.Ollitrault-Fichet R., C. Gauthier, G., Clamen and P. Boch (1998) Microstructural aspects in a polymer-modified cement, Cement and Concrete Research Volume: 28, Issue: 12, 1687-1693.
    23.Paine, K.A., Dhir, R.K., Moroney, R., Kopasakis, K., (2002). Use of crumb rubber to achieve freeze thaw resisting concrete.In: Dhir, R.K. et al. (Ed.), Proceedings of the International Conference on Concrete for Extreme Conditions, University of Dundee, Scotland, UK, 486–498.
    24.Paul, J. (1985). Encyclopedia of Polymer Science and Engineering 14, 787-802.
    25.Pierce, C. E. and M. C. Blackwell (2003) Potential of scrap tire rubber as lightweight aggregate in flow able fill, Waste Management Volume: 23, Issue: 3, 197-208.
    26.Rafat S. (2004), Tarun R. Naik, Properties of concrete containing scrap-tire rubber – an overview, Waste Management, Volume:24, pp.563-569.
    27.Raghvan D, Huynh H, Ferraris C.F. (1998), Workability, mechanical properties and chemical stability of a recycled tire rubber-filled cementitious composite. Journal of Materials Science, 33, 1945-1752.
    28.Rai U.S., R.K. Singh (2005) , Effect of Polyacrylamide on the different propertiesof cement and mortar, Materials Science and Engineering A Volume: 392, 42-50.
    29.Rostami, H., Lepore, J., Silverstraim, T., Zundi, I. (1993) Use of recycled rubber tires in concrete. In: Dhir, R.K. (Ed.) Proceedings of the International Conference on Concrete 2000, University of Dundee, Scotland, UK, 391-399.
    30.Segre N.I. and I. Joekes(2000), Use of tire rubber particles as addition to cement Cement and Concrete Research, Volume:30 paste,1421-1425
    31.Singh, S.S. (1993). Innovative applications of scrap-tires. Wisconsin Professional Engineer, pp.14-17.
    32.Tantala, M.W., Lepore, J.A., Zandi, I., (1996), Quasi-elastic behavior of rubber included concrete. In: Ronald Mersky (Ed.), Proceedings of the 12th International Conference on Solid Waste Technology and Management, Philadelphia, PA.
    33.Topcu, I.B. (1995) The properties of rubberized concretes, Cement and Concrete Research Volume: 25, Issue2, 304-310.
    34.Topcu, I.B. (1997) Assessment of the brittleness index of rubberized concretes, Cement and Concrete Research Volume: 27, Issue:2, 177-183.
    35.Tsao T. C. R., D. C. Winchester, H. N. (1999) Pham In Proceedings of International Symposium on Strategic Planning and Technical Development for Recycling of Scrap Tires, Taipei, Taiwan, May23-24, 2-1-44.
    36.Uchikawa, H., D. Sawaki and S. Hanehara (1995) Influence of kind and added timing of organic admixture on the composition, structure and property of fresh cement paste, Cement and Concrete Research Volume: 25, Issue: 2, 353-364.
    37.Viallis-Terrisse, H.; Nonat, A. et al. J. Colloid Interface Sci. (2001) Volume:244, 58-65
    38.Yang, M., C.M. Neubauer and H.M. Jennings (1997) Inter-particle potential and sedimentation behavior of cement suspensions. , Advanced Cement Based Materials, Volume:5, 1-7.
    39.Young J. (1998), The Science and technology of civil engineering materials, Prentice Hall.
    40.Zhong, S., M. Shi, and Z. Chen, (2002), A study of polymer-modified mortars by the AC impedance technique, Cement and Concrete Research Volume: 32, Issue: 6, 979-982.
    41.行政院環境保護署,2013,資源回收管理基金管理委員會,http://recycle.epa.gov.tw/Recycle/index2.aspx。
    42.李東光,2011,水泥混凝土外加劑配方與製備,中國紡織。
    43.沈永年、王和源、林仁益、郭文田,2004,混凝土技術,全華科技圖書股份有限公司。
    44.周良勳,2006,橡膠混凝土界面轉移區特性之研究,國立中興大學水土保持學系博士論文。
    45.林俊男,2008,以有機硫做橡膠表面改質之研究,國立嘉義大學土木與水資源工程研究所碩士論文。
    46.林建志,2002,水泥砂漿材料強度參數C、Φ值之研究,國立台北科技大學土木與防災研究所碩士論文。
    47.林振雄,2003,廢棄輪胎在水土保持工程的應用,國立東華大學自然資源管理研究所碩士論文。
    48.林凱隆,趙雅涵,徐宏曳,鄭敬融,曾奕翔,黃志忠,焚化飛灰與下水污泥熔熔渣漿體之耐久性研究,經濟部,2007年產業綠色技術研討會,P397-409。
    49.邱垂德、潘昌林,2001廢輪胎在公共工程之應用,廢棄物在工程上之應用,台灣營建研究院,P19~53。
    50.洪書玲,2004,輕質骨材與水泥砂漿界面之微結構特性及分析,國立成功大學土木工程研究所碩士論文。
    51.張文瑞,1996,乙烯丙烯二烯橡膠之力學行為研究,國立成功大學土木工程研究所碩士論文。
    52.許家禎,2009,廢橡膠表面氧化改質對水泥水化之影響,國立嘉義大學土木與水資源工程研究所碩士論文。
    53.許順珠、黃英傑、陳冠中、鄭耀文,2005,國內外回收處理技術與再生應用市場之比較與分析,行政院環境保護署研究報告。
    54.郭燦賢、黃少文,2006,用於水泥混凝土的廢輪胎橡膠粉的改性方法研究,混凝土,60-62。
    55.陳振富、柯國軍、胡紹全、石建軍、郭長青、陳俊傑、孫德綸,2004,橡膠混凝土小變形阻尼研究,噪聲與振動控制,24卷3期,pp.32-34。
    56.馮浩、朱清江,2005,混凝土外加劑工程應用手冊(第2版),中國建築工業出版社。
    57.黃兆龍,1997,混凝土性質與行為,詹氏書局。
    58.黃朝琴,2002,廢橡膠固化技術開發,國立中正大學化學工程研究所碩士論文。
    59.楊智強,2001,混凝土中水泥砂漿和顆粒骨材界面特性之研究,國立交通大學土木工程研究所碩士論文。
    60.葛兆明,2006,混凝土外加劑,化學工業出版社。
    61.董建偉、袁琳、朱涵,2006廢橡膠混凝土的試驗研究及工業應用,混凝土,69-71。
    62.廖國裕,2004,混凝土中骨材與水泥將界面處過度區性質與耐久性之研究,國立交通大學土木工程研究所博士論文。
    63.蔡英明,1999,屑化橡膠混凝土配比及工程性質之研究,朝陽科技大學碩士論文。
    64.盧俊谷,2006,橡膠於水泥砂漿中之力學特性探討,國立嘉義大學土木與水資源工程研究所碩士論文。
    65.羅文政,2005,原型廢輪胎在疊塊式加勁擋土牆之牆面版研究,國立嘉義大學土木與水資源工程學系碩士論文。

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE