| 研究生: |
李建興 Lee, Jiann-Shing |
|---|---|
| 論文名稱: |
超薄閘極介電層與高介電閘極介電層於CMOS製程技術之研究 Study of Ultrathin Gate Dielectric and High K Gate Dielectric for CMOS Technology |
| 指導教授: |
孫喜眾
Sun, Shi-Chung 張守進 Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 介電常數 、閘級介電層 、一氧化氮 、電漿二氧化氮 、二氧化矽 、氧化鉭 |
| 外文關鍵詞: | tantalum pentoxide, nitric oxide, plasma, nitrous oxide, ISSG, gate dielectric, dielectric dielectric, silicon dioxide |
| 相關次數: | 點閱:105 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在於探討二氧化矽(SiO2)與氧化鉭(Ta2O5)兩種介電材料的材料特性。在積體電路中,以二氧化矽作為絕緣層的金氧半(MOS)元件則扮演著相當重要的角色。當元件的尺寸縮小時,絕緣層的厚度也相對地必須變薄,以符合元件的需求。但此刻薄膜的絕緣能力將因而變差,造成元件的漏電流變大。為了有效降低絕緣薄膜的漏電,各種的技術相繼的研發出來,以期能成長出更高品質的氧化薄膜。
本文中所研究的二氧化矽薄膜是以原處蒸汽產生(in-situ steam generation)法為基礎的快速熱處理(RTP)系統所成長的。由實驗的結果顯示,稀釋蒸汽的快速熱氧化法所成長出的二氧化矽(ISSG wet SiO2)薄膜與傳統爐管濕氧化法所成長出之二氧化矽(furnace wet SiO2)薄膜相較之下,可以更有效的降低漏電流、加強崩潰電場與元件的可靠度。而且ISSG二氧化矽也比乾式快速熱氧化法所長出之二氧化矽(dry RTO oxide)具有更好的電特性。接著將成長後未經任何處理的ISSG二氧化矽放置在充滿氮氣(N2)或一氧化氮(NO)的環境中進行高溫熱處理,以改善其薄膜特性。由實驗的結果得知,在一氧化氮的環境下進行熱處理後,可以有效減少電荷的陷落(charge trapping)、擁有較高的電荷乘載力(Qbd)與較高的電子移動率(electron mobility),以及更能承受通道熱載子所產生的影響(channel hot carrier)。總括這些電性的改進主要歸因於氮原子加入到二氧化矽與矽基板(SiO2/Si)的界面層附近後,進而改善了界面過渡層(SiOx)的結構特性。
除了改善二氧化矽的品質特性外,在本文中也探討以具有高介電常數的材料來取代二氧化矽作為閘極介電層之可行性。由於氧化鉭(Ta2O5)具有高介電常數(約25)、良好的披覆特性(step coverage)與高介電強度(dielectric strength),因此以其作為研究題材。以低壓化學氣相沈積法(LPCVD)沈積厚度約為10.5奈米的氧化鉭薄膜在P型矽基板上,之後再將晶片放置於攝氏500度至800度充滿氧氣的爐管中進行高溫熱處理,以改善其電特性。由實驗結果得知在攝氏700度以下熱處理後的電容器,其電特性主要由氧化鉭所主導。當熱處理的溫度高於攝氏700度,則電容器的電特性則轉變為由界面過渡層所主導。此外,當熱處理的溫度高於材料結晶溫度,則由於材料的結晶化,將造成薄膜表面的粗糙化與造成產生較大的漏電流。對於未經熱處理的氧化鉭薄膜而言,在低電場作用下時,其電流傳導是由hopping conduction或Poole-Frenkel emission所主導。而在高電場作用下,其電傳導特性則是由Fowler-Nordheim tunneling所主導。 對於已經結晶的氧化鉭薄膜,在高電場作用下,其傳導特性為Poole Frenkel emission所主導。在低電場作用下時,由於薄膜的結晶化,結晶顆粒的邊界將導致大量的漏電流,因此其傳導特性在此時並不明顯。
此外又將低壓化學氣相沈積所得的氧化鉭薄膜放置在溫度為400度的一氧化二氮高密度電漿(HDPN2O)中進行熱處理,以得到品質更好的薄膜。低溫電漿熱處理主要是可以有效減少晶片的受熱量。結果發現在一氧化二氮高密度電漿中進行熱處理後,其漏電流的改善與增強TDDB (time-dependent dielectric breakdown)特性要比以傳統的氧氣低密度電漿(PO2)或氧氣高密度電漿(HDPO2)熱處理後的結果要好。此外經過低溫高密度電漿熱處理後,並不太會使得在二氧化矽與矽基板界面處的界面過渡層變得更厚。對於電漿熱處理後的氧化鉭薄膜,在低電場作用下時,其電流傳導是由Schottky emission所主導。而在高電場作用下,其電傳導特性則是由Poole-Frenkel emission所主導。
In this thesis two dielectric materials, silicon dioxide SiO2 and tantalum pentoxide Ta2O5, were investigated. In the development of the integrated circuit, the MOS device plays a very important role. The silicon dioxide SiO2 is used to act as its insulator layer. When the device dimension is scaled down, the thickness of the insulator layer is also reduced. Owing to the scaling of the oxide thickness, the increase of the oxide leakage current is inevitable. For minimizing the gate leakage current, many new technologies are recommended to grow high quality thin oxide film.
The rapid thermal processing (RTP) system using in-situ steam generation (ISSG) was employed to grown thin gate oxides in this thesis. Experimental results indicate that oxides grown by diluted steam rapid thermal oxidation exhibit significant reduction in gate leakage current, increase in breakdown field, and device reliability, as compared to conventional furnace-grown wet oxides. Furthermore, ISSG oxides showed better electric characteristics than dry RTO oxides. And the post-annealing effects of ISSG oxide in N2 and nitric oxide (NO) ambient were also examined. It was found that the sample with post-annealing in NO ambient shows less charge trapping, higher charge-to-breakdown, higher electron mobility and smaller device degradation under channel hot carrier stress. This is attributed to the improvement of structural transition layer by the incorporation of nitrogen near and at Si/SiO2 interface during NO annealing.
In addition to the quality improvement of the silicon dioxide, the high dielectric constant material has also been considered to substitute for the silicon dioxide to act as the gate dielectric. In this thesis tantalum pentoxide Ta2O5 was researched due to its high dielectric constant of about 25, good step coverage, and good dielectric strength. Tantalum pentoxide (Ta2O5) thin film with an initial thickness of 10.5 nm was deposited onto p-type silicon substrate by low-pressure chemical vapor deposition (LPCVD), and subsequently annealed in O2 ambient at 500 oC to 800 oC for 30 minutes for improving its electrical characteristics. It was found that the leakage current of the Ta2O5/SiOx capacitor was controlled by the Ta2O5 layer when the annealing temperature was lower than 700 oC. On the other hand, the leakage current was controlled by the interfacial oxide layer (SiOx) when the annealing temperature was higher than 700 oC. Furthermore, higher annealing temperatures will result in a rougher sample surface and a higher leakage current due to Ta2O5 crystallization. For the as-deposited Ta2O5 films, in low electric field region, the leakage current could be dominated either the hopping conduction or Poole-Frenkel emission. Or both of the two conduction mechanisms exist in the leakage current conduction. In high electric field Fowler-Nordheim tunneling was the main leakage mechanism. After the crystallization of the Ta2O5 film, the conduction mechanism in high electric field was dominated by the Poole Frenkel emission. But at low electric field the conduction mechanism was not obvious. It could be affected by the formation of the grain boundary in the Ta2O5 film.
And highly reliable ultrathin low-pressure chemical vapor deposited (LPCVD) tantalum pentoxide (Ta2O5) capacitors were fabricated by using high-density plasma (HDP) annealing in N2O at 400 oC after the film deposition. The low temperature plasma annealing was used for minimizing the thermal budget. It was found that HDP annealing in N2O could significantly reduce the leakage current of Ta2O5 capacitors so as to produce better time-dependent dielectric breakdown characteristics than either conventional oxygen-plasma annealing or HDP annealing in O2. It was also found that HDP annealing in N2O would not significantly increase the thickness of interfacial SiOx layer between Ta2O5 and the underlying silicon substrate. The leakage current mechanism was also investigated. For the HDP N2O annealed Ta2O5 films, it was found that the main leakage mechanism was Schottky emission in low electric field and Poole-Frenkel emission in high electric field.
[1] K. W. Kwon, C. S. Kang, S. O. Park, H. K. Kang, and S. T. Ahn, “Thermally robust Ta2O5 capacitor for 256-Mbit DRAM”, IEEE Trans. Electron Devices, 43(6), p.919, 1996.
[2] H. Z. Massousd, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime”, J. Electrochem. Soc., 132(11), p.2689, 1985.
[3] T. Hattori, “Thermal oxidation of silicon in wet O2/TCE mixtures at 1200 oC”, J. Electrochem. Soc., 126(10), p.1789, 1979.
[4] B. E. Deal, D. W. Hess, J. D. Plummer, and C. P. Ho, “Kinetics of the thermal oxidation of silicon in O2/H2O and O2/Cl2 mixtures”, J. Electrochem Soc., 125(2), p.339, 1978.
[5] B. E. Deal, and A. S. Grove, “General relationship for the thermal oxidation of silicon”, J. Appl. Phys., 36(12), p.3770, 1965.
[6] M. F. Ceiler, Jr. P. A, Kohl, and S. A. Bidstrup, “Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperature”, J. Electrochem. Soc., 142(6), p.2067, 1995.
[7] S. Robles, E. Yieh, and B. C. Nguyen, “Moisture resistance of plasma enhanced chemical vapor deposited oxides used for ultralarge scale integrated device application”, J. Electrochem. Soc., 142(2), p.580, 1995.
[8] G. D. Wilk, and B. Brar, “Electrical characteristics of high-quality sub-25-A oxide grown by ultraviolet ozone exposure at low temperature”, IEEE Electron Device Lett., 20, p.132, 1999.
[9] T. Y. Luo, M. Laughery, G. A. Brown, H. N. Al-Shareef, V. H. C. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, “Effect of H2 content on reliability of ultrathin in-situ steam generated (ISSG) SiO2”, IEEE Electron Device Lett., 21(9), p.382, 2000.
[10] S. Ikeda, M. Okihara, H. Uchida, and N. Hirashita, “Cross-sectional transmission electron microscope studies on intrinsic breakdown spots of thin gate oxide?”, Jpn. J. Appl. Phys., Pt.1, 36, p.2561, 1997.
[11] H. Satake, N. Yasuda, S. I. Takagi, and A. Toriumi, “Correlation between two dielectric breakdown mechanisms in ultra-thin gate oxides”, Appl. Phys. Lett., 69, p.1128, 1996.
[12] M. Koyanagi, H. Sunami, N. Hashimoto, and M. Ashikawa, IEDM Tech. Digest, 1978; 348.
[13] H. Sunami, T. Kure, N. Hashimoto, K. Itoh, T. Toyabe, and S. Asai, “A corrugated capacitor cell (CCC)”, IEEE Trans. Electron Devices, 31, p.746, 1984.
[14] T. Aoyama, S. Saida, Y. Okayama, M. Fujisaki, K. Imai, and T. Arikado, “Leakage current mechanism of amorphous and crystalline Ta2O5 films grown by chemical vapor deposition”, J. Electrochem. Soc., 143(3), p.977, 1996.
[15] C. H. Wang, R. D. Lin, S. F. Chen, and W. K. Lin, “Effects of O2 rapid thermal annealing on the microstructural properties and reliability of rf-sputtered Ta2O5 films”, IEEE Trans. Dielectrics and Electrical Insulation, 7(3), p.316, 2000.
[16] A. Paskaleva, E. Atanassova, T. Dimitrova, “Leakage currents and conduction mechanisms of Ta2O5 layers on Si obtained by RF sputtering”, Vacuum, 58, p.470, 2000.
[17] J. Y. Kim, M. C. Nielsen, E. J. Rymaszewski, and T. M. Lu, “Electrical characteristics of thin Ta2O5 films deposited by reactive pulsed direct-current magnetron sputtering”, J. Appl. Phys., 87(3), p.1448, 2000.
[18] S. Seki, T. Unagami, and O. Kogure, “Effects of surface oxide on leakage current of magnetron sputtered Ta2O5 on Si”, J. Electrochem. Soc., 132(12), p.3054, 1985.
[19] K. S. Park, D. Y. Lee, K. J. Kim, and D. W. Moon, “Growth and characterization of Ta2O5 thin films on Si by ion beam”, Thin Solid Films, 281, p.419, 1996.
[20] S. Boughaba, M. Islam, J. P. McCaffrey, G. I. Sproule, and M. J. Graham, “Ultrathin Ta2O5 films produced by large-area pulsed laser deposition”, Thin Solid Films, 371, p.119, 2000.
[21] H. Ono, and K. I. Koyanagi, “Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films”, Appl. Phys. Lett., 77(10), p.1431, 2000.
[22] H. Shinriki, M. Sugiura, Y. Liu, and K. Shimomure, “Ethanol-addition-enhanced, chemical vapor deposited tantalum oxide films from Ta(OC2H5)5 and oxygen precursors”, J. Electrochem. Soc., 145(9), p.3247, 1998.
[23] I. W. Boyd, J. Y. Zhang, “Low temperature photoformation of tantalum oxide”, Microelectronics Reliability, 40, p.649, 2000.
[24] G. Guiu, and P. Grange, “Synthesis and characterization of Ta2O5-SiO2 mixed oxides”, Bull. Chem. Soc. Jpn., 67(10), p.2716, 1994.
[25] S. Duenas, H. Castan, J. Barbolla, R. R. Kola, P. A. Sullivan, “Electrical characteristics of anode tantalum pentoxide thin films under thermal stress”, Microelectronics Reliability, 40, p.659, 2000.
[26] H. Ono, and K. I. Koyanagi, “Formation of silicon-oxide layers at the interface between tantalum oxide and silicon substrate”, Appl. Phys. Lett., 75(22), p.3521, 1999.
[27] H. Kim, and H. Hwang, “Electrical and reliability characteristics of ultrathin gate oxide prepared by oxidation in D2O”, Jpn. J. Appl. Phys., 38, p.L99, 1999.
[28] B. Maiti, P. J. Tobin, Y. Okada, K. G. Reid, S. A. Ajuria, R. I. Hegde, and V. Kaushik, “Oxynitride gate dielectric grown in nitric oxide (NO): the effect of reoxidation on dielectricof the active edge”, IEEE Electron Device Lett. 17(6), p.279, 1996.
[29] Y. Okada, P. J. Tobin, P. Rushbrook, and W. L. Dehart: “ The performance and reliability of 0.4 micro MOSFET’s with gate oxynitrides grown by rapid thermal processing using mixtures of N2O and O2”, IEEE Trans. Electron Devices, 41(2), p.191, 1994.
[30] A. B. Joshi, G. Yoon, J. Kim, G. Q. Lo, and D. L. Kwong, “High-field breakdown in thin oxide grown in N2O ambient”, IEEE Trans. Electron Device, 40(8), p.1437, 1993.
[31] H. Hwang, W. Ting, B. Maiti, D. L. Kwong, and J. Lee, “Electrical characteristics of ultrathin oxynitride gate dielectric prepared by rapid thermal oxidation of Si in N2O”, Appl. Phys. Lett., 57, p.1010, 1990.
[32] G. D. Wilk and B. Brar, “Electrical characteristics of high-quality sub-25-Å oxide grown by ultraviolet ozone exposure at low temperature”, IEEE Electron Device Lett., 20(3), p.132, 1999.
[33] M. Nagamine, H. Itoh, H. Satake, and A. Toriumi, “Radical oxygen (O*) process for highly-reliable SiO2 with higher film-density and smoother SiO2/Si interface”, IEDM Tech. Dig., p.593, 1998.
[34] S. Ikeda, M. Okihara, H. Uchida, and N. Hirashita, “Cross-sectional transmission electron microscope studies on intrinsic breakdown spots of thin gate oxide?”, Jpn. J. Appl. Phys., Pt.1, 36, p.2561, 1997.
[35] K. Eriguchi, Y. Harada, and M. Niwa, “Influence of 1 nm-thick structural “strained-layer” near SiO2/Si interface on sub-4nm-thick gate oxide reliability”, IEDM Tech. Dig., p.175, 1998.
[36] H. Satake, N. Yasuda, S. I. Takagi, and A. Toriumi, “Correlation between two dielectric breakdown mechanisms in ultra-thin gate oxides”, Appl. Phys. Lett., 69, p.1128, 1996.
[37] K. G. Reid, H. Tseng, R. Hegde, G. Miner, and G. Xing, “Dilute steam rapid thermal oxidation for 30 Å gate oxides”, Electrochem. Soc. Symp. Proc., 99-10, p.23, 1999.
[38] G. Miner, G. Xing, H.-S. Joo, E. Sunchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, “Enabling single-wafer process technologies for reliable ultra-thin gate dielectrics”, Electrochem. Soc. Symp. Proc., 99-10, p.3, 1999.
[39] S. C. Sun, C. H. Chen, L.W. Yen, and C. Lin, “Characterization and optimization of NO-nitrided gate oxide by RTP”, IEDM Tech. Dig., p.687, 1995.
[40] B. Maiti, P. J. Tobin, V. Misra, R. I. Hegde, K. G. Reid and C. Gelatos, “High Performance 20 Å NO oxynitride for gate dielectric in deep sub-quarter micron CMOS technology”, IEDM Tech. Dig., p.651, 1997.
[41] Y. Okada, P. J. Tobin, K. G. Reid, R. I. Hegde, B. Maiti, and S. A. Ajuria, “Furnace grown gate oxynitride using nitric oxide (NO)”, IEEE Trans. Electron Devices, 41(9), p.1608, 1994.
[42] K. Kumar, A. I. Chou, C. Lin, P. Choudhury, J. C. Lee, and J. K. Lowell, “Optimization of sub 3 nm gate dielectrics grown by rapid thermal oxidation in a nitric oxide ambient”, Appl. Phys. Lett., 70(3), p.384, 1997.
[43] Z-Q. Yao, “The nature and distribution of nitrogen in silicon oxynitride grown on silicon in a nitric ambient”, J. Appl. Phys., 78(5), p.2096, 1995.
[44] B. Maiti, P. J. Tobin, Y. Okada, K. G. Reid, S. A. Ajuria, R. I. Hegde, and V. Kaushik, “Oxynitride gate dielectric grown in nitric oxide (NO): the effect of reoxidation on dielectric reliability of the active edge, IEEE Electron Device Lett., 17(6), p.279, 1996.
[45] M. Bhat, J. Kim, J. Yan, G. W. Yoon, L. K. Han, and D. L. Kwong, “MOS characteristics of ultrathin NO-grown oxynitrides”, IEEE Electron Device Lett., 15(10), p.421, 1994.
[46] J.-J. Ganem, S. Rigo, I. Trimaille, I. J. R. Baumvol, and F. C. Stedile, “Dry oxidation mechanisms of thin dielectric films formed under N2O using isotopic tracing methods”, Appl. Phys. Lett., 68(17), p.2366, 1996.
[47] T. Sakoda, M. Matsumura, and Y. Nishioka, “Effects of post-oxidation annealing on 3nm-thick low-temperature-grown gate oxide”, Appl. Surf. Sci., 117, p.241, 1997.
[48] Z. –Q. Yao, H. B. Harrison S. Dimitrijev, and Y. T. Yeow, “Effects of nitric oxide annealing of thermally grown silicon dioxide characteristics”, IEEE Electron Device Lett., 16(8), p.345, 1995.
[49] H. Hwang, W. Ting, D. L. Kwong, and J. Lee, IEDM Tech. Dig., p.421, 1990.
[50] S. H. Lo, D.A. Buchanan and Y. Taur, ”Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFET’s with ultrathin oxides”, IBM J. Res. Develop., 43(5), p.327, 1999.
[51] S. C. Sun, C. H. Chen, D. L. W. Yen, and C. J. Lin, “Characterization and optimization of NO-nitrided gate oxide by RTP”, IEDM Tech. Dig., p.687, 1995.
[52] Y. Okada, P. J. Tobin, V. Lakhotia, W. A. Feil, S. A. Ajuria, and R. I. Hedge, “Relationship between growth conditions, nitrogen profile, and charge to breakdown of gate oxynitrides grown from pure N2O”, Appl. Phys. Lett., 63, p.194, 1993
[53] Y. Murakami, T. Shiota, and T. Shingyouji, “Effects of oxidation ambient on the dielectric breakdown characteristics of thermal oxide films of silicon”, J. Appl. Phys., 75, p.5302, 1994.
[54] T. Hori, H. Iwasaki, and K. Tsuji, “Electrical and physical properties of ultrathin reoxidized nitrided oxide prepared by rapid thermal processing”, IEEE Trans. Electron Devices, 36, p.340, 1989.
[55] S. Banerjee, Y. J. Park, D. R. Lee, Y. H. Jeong, K. –B. Lee, S. B. Yoon, B. H. Chio, and W. –J. Cho, “Effects of oxidation process on interface roughness of gate oxide on silicon : X-ray reflectivity study”, Appl. Phys. Lett., 72(4), p.433, 1998.
[56] T. Sakoda, M. Matsumura, and Y. Nishioka, “Effects of post-oxidation annealing on 3 nm-thick low-temperature-grown gate oxide”, Appl. Surf. Sci., 117, p.241, 1997.
[57] Y. N. Cohen and T. Gorczyca, “The effect of hydrogen on trap generation, positive charge trapping, and time-dependent dielectric breakdown of gate oxide”, IEEE Electron Devices. Lett., 9(6), p.287, 1988.
[58] R. P. Vasquez and A. Madhukar, “Strain-dependent defect formation kinetics and a correlation between flatband voltage and nitrogen distribution in thermally nitrided SiOxNy/Si structures”, Appl. Phys. Lett., 47, p.998, 1985.
[59] Y. Hokari, “Dielectric breakdown wearout limitation of thermally-grown thin-gate oxide”, Solid State Electronics, 33(1), p.75, 1990.
[60] E. Hasegawa, Akihiko, K. Akimoto, M. Tsukiji, and N. Ohta, “SiO2/Si interface structures and reliability characteristics”, J. Electrochem. Soc., 142(1), p.273, 1995.
[61] T. Hori, “Inversion layer mobility under high normal field in nitrided-oxide MOSFET’s”, IEEE Trans. Electron Devices, 37(9), p.2058, 1990.
[62] T. Y. Luo, M. Laughery, G. A. Brown, H. N. Al-Shareef, V. H. C. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, “Effect of H2 content on reliability of ultrathin in-situ steam generated SiO2”, IEEE Electron Device Lett., 21(9), 2000.
[63] J. Appenzeller, J. A. delAlamo, R. Martel, K. Chan, and P. Sdomon, “Ultrathin 600 oC wet thermal silicon dioxide”, Electrochem. And Solid-state Lett., 3, p.84, 2000.
[64] E. Hasegawa, K. Akimoto, M. Tsukiji, and N. Ohta, “SiO2/Si interface structures and reliability characteristics”, J. Electrochem. Soc., 142(1), p.273, 1995.
[65] K. F. Schuegraf and C. Hu, “Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation”, IEEE Trans. Electron Devices, 41, p.761, 1994.
[66] Y. Hokari, “Stress voltage polarity dependence of thermally grown thin gate oxide wearout”, IEEE Trans. Electron Devices, 35, p.1299, 1988.
[67] Y. Okada, P.J. Tobin, K.G. Reid, R.I. Hedge, B. Maiti, and S.A. Ajuria, “Gate oxynitride grown in nitric oxide (NO)”, Tech. Dig. Symp. VLSI Tech., p.105, 1994.
[68] Y. Hokari, “Dielectric breakdown wearout limitation of thermally-grown thin-gate oxides”, Solid State Electronics, 33(1), p.75, 1990.
[69] M. M. Moslehi, K.C. Saraswat, and S.C. Shatas, “Rapid thermal nitridation of SiO2 for nitroxide thin dielectrics”, Appl. Phys. Lett., 47, p.1113, 1985.
[70] S. Zaima, T. Furuta, and Y. Yasuda, “Preparation and properties of Ta2O5 films by LPCVD for ULSI application”, J. Electrochem. Soc., 137(4), p.1297, 1990.
[71] K. Kishiro, N. Inoue, S. J. Chen, and M. Yoshimaru, “Structure and electrical properties of thin Ta2O5 deposited on metal electrodes”, Jpn. J. Appl. Phys., 37, p.1336, 1998.
[72] S. W. Park, Y. K. Baek, J. Y. Lee, C. O. Park, and H. B. Im, “Effects of annealing conditions on the properties of tantalum oxide films on silicon substrates”, J. Electronic Materials, 21(6), p.635, 1992.
[73] I. L. Kim, J. S. Kim, O. S. Kwon, S. T. Ahn, J. S. Chun, and W. J. Lee, “Effects of annealing in O2 and N2 on the electrical properties of tantalum oxide thin films prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition”, J. Electron Materials, 24(10), p.1435, 1995.
[74] A. Pignolet, G. M. Rao, and S. B. Krupanidhi, “Rapid thermal processed thin films of reactively sputtered Ta2O5”, Thin Solid Films, 258, p.230, 1995.
[75] H. Shinriki, and M. Nakata, “UV-O3 and dry-O2: two-step annealed chemical vapor deposited Ta2O5 films for storage dielectrics of 64-Mb DRAM’s”, IEEE Trans. Electron Devices, 38(3), p.455, 1991.
[76] W. R. Hitchens, W. C. Krusell, and D. M. Dobkin, “Tantalum oxide thin films for dielectric applications by low-pressure chemical vapor deposition”, J. Electrochem. Soc., 140(9), p.2615, 1993.
[77] S. C. Sun, and T. F. Chen, “Reduction of leakage current in chemical vapor deposited Ta2O5 thin films by furnace N2O annealing”, IEEE Trans. Electron Devices, 44(6), p.1027, 1997.
[78] Y. Nishioka, N. Homma, H. Shinriki, K. Maukai, K. Yamaguchi, A. Uchida, K. Higeta, and K. Ogiue, “Ultra-thin Ta2O5 dielectric film for high-speed bipolar memories”, IEEE Trans. Electron Devices, 34(9), p.1957, 1987.
[79] P. K. Roy, and I. C. Kizilyalli, “Stacked high-k gate dielectric for gigascale integration of metal-oxide-semiconductor technologies”, Appl. Phys. Lett., 72(22), p.2835, 1998.
[80] J. C. Yu, B. C. Lai, and J. Y. M. Lee, “Fabrication and Characterization of metal-oxide-semiconductor field-effect transistors and gate diodes using Ta2O5 gate oxide”, IEEE Trans. Electron Device, 21(11), p.537, 2000.
[81] S. Ezhilvalavan, and T. Y. Tseng, “Conduction mechanism in amorphous and crystalline Ta2O5 thin films”, J. Appl. Phys. 83(9), p.4797, 1998.
[82] B. C. M. Lai, N. H. Kung, and J. Y. M. Lee, “a study on the capacitance-voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications”, J. Appl. Phys., 85(8), p.4087, 1999.
[83] W. S. Lau, M. T. C. Perera, P. Babu, A. K. Ow, T. Han, N. P. Sandler, C. H. Tung, T. T. Sheng, and P. K. Chu, “The superiority of N2O olasma annealing over O2 plasma annealing for amorphous tantalum pentoxide (Ta2O5) films”, Jpn. J. Appl. Phys., 37, p.L435, 1998.
[84] S. Tanimoto, M. Matsui, K. Kamisako, K. Kuroiwa, and Y. Tarui, “investigation on leakage current reduction of photo-CVD tantalum oxide films accomplished by active oxygen annealing”, J. Electrochem. Soc., 139(1), p.321, 1992.
[85] A. Watanabe, M. Mukaida, K. Osato, Y. Imai, T. Kameyama, and K. Fukuda, “Recovery of stoichiometry of Ta2O5 prepared by KrF excimer laser CVD from tantalum methoxide using microwave discharge of oxygen gas”, J. Material Sci., 30, p.4603, 1995.
[86] K. Kukli, J. Aarik, A. Aidla, O. Kohan, T. Uustare, and V. Sammelselg, “Properties of tantalum oxide thin films grown by atomic layer deposition”, Thin Solid Films, 260, p.135, 1995.
[87] S. Tanimoto, N. Shibata, K. Kuroiwa, and Y. Tarui, “Synchronously excited discrete chemical vapor deposition of Ta2O5”, J. Electrochem. Soc., 141(5), p.1339, 1994.
[88] W. S. Lau, T. S. Tan, N. P. Sandler, and B. S. Page, “Characterization of defect states responsible for leakage current in tantalum pentoxide films for very-high-density dynamic random access memory (DRAM) application”, Jpn. J. Appl. Phys., 34, p.757, 1995.
[89] S. C. Sun and T. F. Chen, “A novel approach for leakage current reduction of LPCVD Ta2O5 and TiO2 films by rapid thermal N2O annealing”, IEDM Tech. Dig., p.333, 1994.
[90] S. C. Sun and T. F. Chen, “Leakage current reduction in chemical-vapor-deposited Ta2O5 films by rapid thermal annealing in N2O”, IEEE Electron Dev. Lett., 17(7), p.355, 1996.
[91] S. Kamiyama, P. Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama, and A. Ishitani, “Ultrathin tantalum oxide capacitor dielectric layers fabricated using rapid thermal nitridation prior to low pressure chemical vapor deposition”, J. Electrochem. Soc., 140(6), p.1617, 1993.
[92] H. S. Moon, J. S. Lee, S. W. Han, J. W. Park, J. H. Lee, S. K. Yang, and H. H. Park, “Effect of deposition temperature on dielectric properties of PECVD Ta2O5 thin film”, J. Material Sci., 29, p.1545, 1994.
[93] H. Koyama, S. Tanimoto, K. Kuroiwa, and Y. Tarui, “Thermal properties of various Ta precursors used in chemical vapor deposition of tantalum pentoxide”, Jpn. J. Appl. Phys., 33, p.6291, 1994.
[94] K. Chen, G. R. Yang, M. Nielsen, T. M. Lu, and E. J. Rymaszewski, “X-ray photoelectron spectroscopy study of Al/ Ta2O5 and Ta2O5/Al buried interfaces”, Appl. Phys. Lett., 70(3), p.399, 1997.
[95] S. O. Kim, J. S. Byun, and H. J. Kim, “The effect of substrate temperature on the composition and growth of tantalum oxide thin films deposited by plasma-enhanced chemical vapour deposition”, Thin Solid Films, 206, p.102, 1991.
[96] W. S. Lau, K. K. Khaw, P. W. Qian, N. P. Sandler, and P. K. Chu, “A comparison of defect states in tantalum pentoxide (Ta2O5) films after rapid thermal annealing in O2 or N2O by zero-bias thermally stimulated current spectroscopy”, Jpn. J. Appl. Phys. Part.1, 35(5A), p.2599, 1996.
[97] S. I. Kimuro, Y. Nishioka, A. Shintani, and K. Mukai, “Leakage-current increase in amorphous Ta2O5 films due to pinhole growth during annealing below 600 oC”, J. Electrochem. Soc., 130(12), p.2414, 1983.
[98] R. A. B. Devine, L. Vallier, J. L. Autran, P. Paillet, and J. L. Leray, “Electrical properties of Ta2O5 films obtained by plasma enhanced chemical vapor deposition using a TaF5 source”, Appl. Phys. Lett., 68(25), p.1775, 1996.
[99] S. Banerjee, B. Shen, I. Chen, J. Bohlman, G. Brown, and R. Doering, “Conduction mechanism in sputtered Ta2O5 on Si with an interfacial SiO2 layer”, J. Appl. Phys., 65(3), p.1140, 1989.
[100] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC2H5)5 precursor”, J. Appl. Phys., 83(9), p.4823, 1998.
[101] G. Q. Lo, D. L. Kwong, and S. Lee, “Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films”, Appl. Phys. Lett., 60(26), p.3286, 1992.
[102] S. Zaima, T. Furuta, Y. Koide, Y. Yasuda, and M. lida, “Conduction mechanism of leakage current in Ta2O5 films on Si prepared by LPCVD”, J. Electrochem. Soc., 137(9), p.2876, 1990.
[103] Y. Nishioka, S. Kimura, H. Shinriki, and K. Mukai, “Dielectric characteristics of double layer structure of extremely thin Ta2O5/SiO2 on Si”, J. Electrochem. Soc., 134(2), p.410, 1987.
[104] G. S. Oehrlein, “Oxidation temperature dependence of the dc electrical conduction characteristics and dielectric strength of thin Ta2O5 films on silicon”, J. Appl. Phys., 59(5), p.1587, 1986.
[105] T. Aoyama, S. Saida, Y. Okayama, M. Fujisaki, K. Imai, and T. Arikado, “Leakage current mechanism of amorphous and polycrystalline Ta2O5 films grown by chemical vapor deposition”, J. Electrochem. Soc., 143(3), p.977, 1996.
[106] B. C. M. Lai, and J. Y. M. Lee, “Leakage current mechanism of metal-Ta2O5-metal capacitors for memory device application”, J. Electrochem. Soc., 146(1), p.266, 1999.
[107] H. Matsuhashi, and S. Nishikawa, “Optimum electrode materials for Ta2O5 capacitors for high- and low- temperature process”, Jpn. J. Appl. Phys., 33, p.1293, 1994.
[108] A. Masuda, A. Morimoto, M. Kumeda, and T. Shimizu, “Novel oxidation process of hydrogenated amorphous silicon utilizing nitrous oxide plasma”, Appl. Phys. Lett., 61(7), p.816, 1992.
[109] Y. Matsui, K. Torri, M. Hirayama, Y. Fujisaki, S. Iijima, and Y. Ohji, “Reduction of current leakage in chemical–vapor-deposited Ta2O5 thin-films by oxygen radical annealing”, IEEE Electron Dev. Lett., 17(9), p.431, 1996.
[110] W. K. Choi, L. S. Tan, J. Y. Lim, and S. G. Pek, “Electrical characterisation of rf sputtered tantalum oxide films rapid thermal annealed with Ar, N2, O2 and N2O”, Thin Solid Films, 343, p.105, 1999.
[111] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing agent than O2 for the post-deposition annealing of Ta2O5 on Si capacitors”, Jpn. J. Appl. Phys., 36, p.661, 1997.
[112] F. C. Chiu, J. J. Wang, J. Y. M. Lee, and S. C. Wu, “Leakage currents in amorphous Ta2O5 thin film”, J. Appl. Phys., 81(10), p.6911, 1997.