簡易檢索 / 詳目顯示

研究生: 黃健紘
Huang, Chien-Hung
論文名稱: 應用Hilbert-Huang轉換於電力品質訊號之時頻分析
Application of Hilbert-Huang Transform for Time-Frequency Analysis of Power Quality Signals
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: Hilbert頻譜分析經驗模態分解本質模態函數Hilbert-Huang轉換
外文關鍵詞: intrinsic mode function, Hilbert spectral analysis, empirical mode decomposition, Hilbert-Huang transform
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於Hilbert-Huang轉換具有優異之時頻定位能力,本文之研究主旨即在於將此轉換應用於電力訊號之時頻分析,其中包含經驗模態分解法與Hilbert頻譜分析等兩個主要步驟之構建。而於經驗模態分解法中,其負責將訊號分解成數個本質模態函數之組合,至於Hilbert頻譜分析則於Hilbert轉換後,求得每一本質模態函數之瞬時頻率與振幅,再藉由Hilbert頻譜圖之展現,協助掌握電力品質訊號之時頻分佈。又為驗證此時頻分析方法所具有之優異解析度,本文並將本方法應用於電壓中斷、電壓驟降、電壓突昇、電容切換暫態、電流諧波及電壓閃爍等電力訊號之分析,並與S轉換的分析結果作比較,測試結果佐證該方法確具良好之時頻定位效能,極適用於電力訊號之分析與檢測。

      Thanks to the time-frequency localization capability of Hilbert-Huang Transform (HHT), the theme of this thesis is thus focused on the application of such transform for the analysis of power quality signals. The HHT algorithm consists of two major computation procedures that include Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA). While EMD is responsible for the decomposition of signals into a collection of intrinsic mode functions (IMF), HSA describes the time-frequency distribution with the Hilbert spectrum representation with the aid of Hilbert transform. In order to confirm the feasibility of the method, this approach has been utilized to analyze several power disturbance signals, including the voltage interruptions, voltage sags, voltage swells, capacitor switching-transients, current harmonics, and voltage flickers. Test results consolidate the proposed method for the application considered.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景 1 1.2 研究方法 3 1.3 論文架構 4 第二章 時頻分析相關演算法 5 2.1 短時Fourier轉換 5 2.2 小波轉換 8 2.3 S轉換 13 2.4 Wigner-Ville分佈 19 第三章 Hilbert-Huang轉換演算法 22 3.1 Hilbert轉換 22 3.2 Hilbert-Huang轉換 27 3.2.1 經驗模態分解 27 3.2.1.1 本質模態函數 28 3.2.1.2 篩選程序 30 3.2.1.3 經驗模態分解法之完整性 37 3.2.1.4 經驗模態分解法之正交性 39 3.2.1.5 間歇性檢查 40 3.2.2 Hilbert頻譜分析 43 3.3 分析與討論 48 第四章 模擬與分析 50 4.1 電壓中斷 52 4.2 電壓驟降 56 4.3 電壓突昇 60 4.4 電流諧波 64 4.5 電容切換暫態 68 4.6 電壓閃爍 72 第五章 結論與未來研究方向 76 5.1 結論 76 5.2 未來研究方向 77 參考文獻 78 附錄A 82 作者簡介 84

    [1] R. C. Dugan, M. F. McGranaghan, and H. W. Beaty, Electrical Power Systems   Quality, Second edition, McGraw-Hill, New York, USA, 2002.

    [2] D. D. Sabin and A. Sundaram, “Quality Enhances Reliability [Power   
      Supplies]”, IEEE Spectrum, Vol. 33, No. 2, pp. 34-41, Feb. 1996.

    [3] A. Domijan, G. T. Heydt, A. P. S. Meliopoulos, S. S. Venkata, and S.  
      West, “Directions of Research on Electric Power Quality”, IEEE Trans.  
      Power Delivery, Vol. 8, No. 1, pp. 429-436, Jan. 1993.

    [4] M. Wang and A. V. Mamishev, “Classification of Power Quality Events
      Using Optimal Time-Frequency Representations—Part 1: Theory”, IEEE
      Trans. Power Delivery, Vol. 19, No. 3, pp. 1504-1510, July 2004.

    [5] M. Wang, G. I. Rowe, and A. V. Mamishev, “Classification of Power
      Quality Events Using Optimal Time-Frequency Representations—Part 2:
      Application”, IEEE Trans. Power Delivery, Vol. 19, No. 3, pp. 1496-1503,
      July 2004.

    [6] G. T. Heydt, P. S. Fjeld, C. C. Liu, D. Pierce, L. Tu, and G. Hensely,
      “Applications of the Windowed FFT to Electric Power Quality Assessment”,
      IEEE Trans. Power Delivery, Vol. 14, No. 4, pp. 1411-1416, Oct. 1999.

    [7] P. S. Wright, “Short-Time Fourier Transforms and Wigner-Ville
      Distributions Applied to the Calibration of Power Frequency Harmonic
      Analyzers”, IEEE Trans. Instrumentation and Measurement, Vol. 48, No. 2,
      pp. 475-478, Apr. 1999.

    [8] Y. H. Gu and M. H. J. Bollen, “Time-Frequency and Time-scale Domain
      Analysis of Voltage Disturbances”, IEEE Trans. Power Delivery, Vol. 15,
      No. 4, pp. 1279-1284, Oct. 2000.

    [9] S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, and S. C. Bhatt,
      “Characterization of Distribution Power Quality Events with Fourier and
      Wavelet Transforms”, IEEE Trans. Power Delivery, Vol. 15, No. 1, pp. 247-
      254, Jan. 2000.

    [10] S. Santoso, E. J. Powers, W. M. Grady, and P. Hofmann, “Power Quality
       Assessment Via Wavelet Transform Analysis”, IEEE Trans. Power Delivery,
       Vol. 11, No. 2, pp. 924-930, Apr. 1996.

    [11] S. J. Huang and C. W. Lu, “Enhancement of Digital Equivalent Voltage
       Flicker Measurement via Continuous Wavelet Transform”, IEEE Trans.
       Power Delivery, Vol. 19, No. 2, pp. 663-670, Apr. 2004.

    [12] S. J. Huang, C. T. Hsieh and C. L. Huang, “Application of Morlet
       Wavelets to Supervise Power System Disturbances”, IEEE Trans. Power
       Delivery, Vol. 14, No. 1, pp. 235-243, January 1999.

    [13] S. J. Huang and C. T. Hsieh, “Coiflet Wavelet Transform Applied to
       Inspect Power System Disturbances-Generated Signals”, IEEE Trans.
       Aerospace and Electronic Systems, Vol. 38, No. 1, pp. 204-210, January
       2002.

    [14] M. V. Chilukuri and P. K. Dash, “Multiresolution S-Transform-Based
       Fuzzy Recognition System for Power Quality Events”, IEEE Trans. Power
       Delivery, Vol. 19, No. 1, pp. 323-330, Jan. 2004.

    [15] P. K. Dash, B. K. Panigrahi, D. K. Sahoo, and G. Panda “Power Quality
       Disturbance Data Compression, Detection, and Classification Using
       Integrated Spline Wavelet and S-Transform”, IEEE Trans. Power Delivery,
       Vol. 18, No. 2, pp. 595-600, Apr. 2003.

    [16] P. K. Dash, B. K. Panigrahi, and G. Panda “Power Quality Analysis Using
       S-Transform”, IEEE Trans. Power Delivery, Vol. 18, No. 2, pp. 406-411,
       Apr. 2003.

    [17] I. W. C. Lee and P. K. Dash, “S-Transform-Based Intelligent System for
       Classification of Power Quality Disturbance Signals”, IEEE Trans.
       Industrial Electronics, Vol. 50, No. 4, pp. 800-805, Aug. 2003.

    [18] P. K. Dash and M. V. Chilukuri, “Hybrid S-Transform and Kalman
       Filtering Approach for Detection and Measurement of Short Duration
       Disturbances in Power Networks”, IEEE Trans. Instrumentation and
       Measurement, Vol. 53, No. 2, pp. 588-596, Apr. 2004.

    [19] IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE
       Standard 1159-1995, IEEE, New York, 1995.

    [20] 江榮城,電力品質實務(一),全華科技圖書股份有限公司,民國九十年五月

    [21] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and
       Applied Mathematics, Philadelphia, PA, USA, 1992.

    [22] I. Daubechies, “The Wavelet Transform, Time-Frequency Localization and
       Signal Analysis”, IEEE Trans. Information Theory, Vol. 36, No. 5, pp.
       961-1005, Sept. 1990.

    [23] F. Hlawatsch and G. F. Boudreaux-bartels, “Linear and Quadratic Time-
       Frequency Signal Representations”, IEEE Signal Processing Magazine, pp.
       21-67, Apr. 1992.

    [24] S. Mallat, A Wavelet Tour of Signal Processing, Second edition, Academic
       Press, San Diego, California, USA, 2000.

    [25] Shie Qian, Introduction to Time-Frequency and Wavelet Transforms,
       Prentice Hall, Upper Saddle River, New Jersey, USA, 2002.

    [26] R. L. Allen and D. W. Mills, Signal Analysis: Time, Frequency, Scale,
       and Structure, Wiley-IEEE Press, Hoboken, New Jersey, USA, 2003.

    [27] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the
       Complex Spectrum: The S Transform”, IEEE Trans. Signal Processing, Vol.
       44, No. 4, pp. 998-1001, Apr. 1996.

    [28] http://www.cora.nwra.com/~stockwel/

    [29] P. C. Chu, “The S-Transform for Obtaining Localized Spectra”, MTS J.,
       Vol. 29, pp. 28-38, 1996.

    [30] C. R. Pinnegar and L. Mansinha, “The S-Transform with Windows of
       Arbitrary and Varying Shape”, Geophysics, Vol. 68, No. 1, pp. 381-385,
       2003.

    [31] C. R. Pinnegar and L. Mansinha, “The Bi-Gaussian S-Transform”, SIAM J.
       Scientific Computing, Vol. 24, No. 5, pp. 1678-1692, 2003.

    [32] C. R. Pinnegar and L. Mansinha, “Time-local Spectral Analysis for Non-
       Stationary Time Series: The S-Transform for Noisy Signals”, Fluctuation
       and Noise Letters, Vol. 3, No. 3, pp. L357-L364, Sept. 2003.

    [33] S. L. Hahn, Hilbert Transforms in Signal Processing, Artech House,
       Boston, USA, 1996.

    [34] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C.
       Yen, C. C. Tung, and H. H. Liu, “The Empirical Mode Decomposition and
       the Hilbert Spectrum for Nonlinear and Non-stationary Time Series
       Analysis”, Proc. Royal Society London Series A, Vol. 454, pp. 903-995,
       1998.

    [35] N. E. Huang, Z. Shen, and S. R. Long, “A New View of Nonlinear Water
       Waves: The Hilbert Spectrum”, Annu. Rev. Fluid Mech., Vol. 31, pp. 417-
       457, 1999.

    [36] N. E. Huang, M. C. Wu, S. R. Long, Samuel S. P. Shen, W. Qu, P.
       Gloersen, and K. L. Fan, “A Confidence Limit for the Empirical Mode
       Decomposition and Hilbert Spectral Analysis”, Proc. Royal Society
       London Series A, Vol. 459, pp. 2317-2345, 2003.

    [37] http://techtransfer.gsfc.nasa.gov/HHT/index.html

    [38] E. T. Copson, B. Bollobas, W. Fulton, A.Katok, F. Kirwan, P. Sarnak, and
       B. Simon, Asymptotic Expansions (Cambridge Tracts in Mathematics),
       Cambridge University Press, Cambridge, UK, 2004.

    [39] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for
       Signal Processing, Prentice Hall, Upper Saddle River, New Jersey, 2000.

    無法下載圖示 校內:2055-06-24公開
    校外:2055-06-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE