| 研究生: |
壽鶴年 Show, Long-Life |
|---|---|
| 論文名稱: |
非線性強健控制設計方法於人造衛星姿態控制之研究 Spacecraft Attitude Control: A Nonlinear Robust Control Approach |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 慣性輪控制 、推力控制 、漢彌爾敦-甲可畢不等式 、非線性強健控制 、衛星姿態穩定控制 、衛星姿態追蹤控制 |
| 外文關鍵詞: | attitude stabilization control, wheel control, thruster control, nonlinear robust control, attitude tracking control, Hamilton-Jacobi-lsaacs inequality |
| 相關次數: | 點閱:126 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討人造衛星姿態控制問題,採用非線性強健控制方法設計出具有扺抗外擾、抑制內部不確定性及最小燃料消耗控制器。本文將衛星姿態控制問題分為姿態穩定和姿態追蹤兩部份,衛星姿態穩定問題分成推力控制和慣性輪控制;衛星的姿態穩定控制,使用推力控制時採用線性矩陣不等式(LMI)、非線性 和非線性混合 設計出推力控制時控制律;慣性輪控制時採用非線性 控制設計。衛星姿態追蹤控制在動態誤差函數下採用非線性 控制器和比例積分微分(PID)控制器求得衛星姿態追蹤控制律。本論文中所提出控制法則應用至中華衛星三號,進行模擬以驗証對衛星姿態強健穩定與強健性能控制。
In this dissertation, nonlinear control , mixed and LMI control design methods are proposed to solve large-angle robust attitude control and tracking of spacecraft. The robust attitude control problem is formulated as thruster control and wheels control where the desired stability and disturbance rejection are achieved. For the ROCSAT-3 spacecraft, a highly accurate and robust attitude control is desired during the orbit-raising phase and the other mission modes. The three-axis attitude control is achieved using 1) four body-fixed, canted thrusters or 2) a cluster 4 wheels. The nonlinear dynamic equations of the satellite are derived and the control requirements are stated. The dissertation investigates both attitude stabilization and tracking problems. As to the former, the nonlinear controller parameters are designed using nonlinear control , mixed and linear matrix inequality (LMI) method in thruster and wheels control models. As to the latter, the nonlinear controller that asymptotically tracks a desired reference trajectory under parameter variations and external disturbance is investigated. Asymptotic tracking is ensured under suitable restraints of the reference inputs. Simulation results based on the ROCSAT-3 system are then presented to demonstrate the proposed design method.
[1] Agrawal, B. N., Design of Geosynchronous Spacecraft. Prentice-Hall, Englewood Cliffs, NJ, 1986.
[2] Apkarian, P., Becker, G., Gahinet, P. and Kajiwara, H., “LMI Techniques in Control Engineering From Theory to Practice,” Workshop Notes CDC, 1996.
[3] Boyd, S. P., Ghaoui, L. El, Feron, E. and Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory, SIAM, 1994.
[4] Cavallo, A., and Maria, G. De., “Attitude Control of Large Angle Maneuvers,” IEEE Workshop on Variable Structure Control, pp. 232-236, 1996.
[5] Chen, B. S., and Chang, Y. C., “Nonlinear Mixed Control for Robust Tracking Design of Robotic Systems,” International Journal of Control, 67(6), pp.837-857, 1997.
[6] Dalsmo, M., and Egeland, O., “State Feedback -suboptimal Control of A Rigid Spacecraft,” IEEE Transaction on Automatic Control, 42(8), pp.1186-1189, 1997.
[7] Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M., LMI Control Toolbox, 1995.
[8] Gennaro, S. Di., Monaco, S., and Normand-Cyrot, D., “Nonlinear Digital Scheme for Attitude Tracking,” AIAA Journal of Guidance Control, and Dynamics, 22(3), pp.467-478, 1999.
[9] Hughes, P. C., Spacecraft Attitude Dynamics. John Wiley & Sons, 1986.
[10] Isidori, A., “Dissipation Iinequalities in Nonlinear -control,” Proceedings of IEEE Control and Decision Conference, pp. 3265-3270, 1992.
[11] Isidori, A., and Astolfi, A., “Disturbance Attenuation and Control via Measurement Feedback in Nonlinear Systems,” IEEE Transaction on Automatic Control, 37(9), pp. 1283-1293, 1992.
[12] Joshi, S. M., Kelkar, A. G. and Wen, J. T. Y., “Robust Attitude Stabilization of Spacecraft Using Nonlinear quaternion feedback,” IEEE Transaction on Automatic Control, 40(10), 1995.
[13] Kang, W., “Nonlinear Control and Its Applications to Rigid Spacecraft,” IEEE Transaction On Automatic Control, 40(7), pp.1281-1285, 1995.
[14] Kaplan M. H., Modern Spacecraft Dynamic and Control. John Wiley & Sons, 1976.
[15] Kelly, R., “Global Positioning of Robot Manipulator via PD Control Plus a Class of Nonlinear Integral Actions,” IEEE Transaction on Automatic Control, 43(7), pp.934-938, 1998.
[16] Krstic, M., and Tsiotras, P., “Inverse Optimal Stabilization of Rigid Spacecraft,” IEEE Transaction on Automatic Control, 44(5), pp.1042-1049, 1999.
[17] Lin, W., “Mixed Control via State Feedback for Nonlinear Systems,” International Journal of Control, 64(5), pp. 899-922, 1996.
[18] Lo, S. C., and Chen, Y. P., “Smooth Sliding-Mode Control for Spacecraft Attitude Tracking Maneuvers,” AIAA Journal of Guidance Control, and Dynamics, 18(6), pp. 1345-1349, 1995.
[19] Lu, G. P., Zheng, Y. F., and Ho, D. W. C., “Nonlinear robust Control via Dynamic Output Feedback,” System & Control Letters, 39(3), pp.193-202, 2000.
[20] Robinett, R. D., and Park, G. G., “Spacecraft Euler Parameter Tracking of Large-Angle Maneuvers via Sliding Mode Control,” Journal of Guidance Control, and Dynamics, 19(3), pp.702-703, 1996.
[21] Rocco, P., “Stability of PID Control for Industrial Robot Arms,” IEEE Transaction on Robotics and Automation, 12(4), pp. 606-614, 1996.
[22] Scrivener, S. L., and Thomson, R. C., “Survey of Time-optimal Attitude Maneuvers,” AIAA Journal of Guidance, Control, and Dynamics, 17(2), pp.225-233, 1994.
[23] Shuster, M. D., “A Survey of Attitude Representations,” Journal of Astronautical Science, 41(4), pp.439-517,1993.
[24] Singh, S. N., “Nonlinear Attitude Control of Spacecraft,” IEEE Transaction on Aerospace and Electronic Systems, 23, pp.371-379,1987.
[25] Siouris, G. M., Aerospace Avionics Systems. Academic Press, 1993.
[26] Stoltz, P. M., Sivapiragasam, S., and Anthony, T., “Satellite Orbit-raising Using LQR Control With Fixed Thrusters,” Advances in Astronautical Science, pp. 1-13, AAS 98-007, 1998.
[27] Tsiotras, P., “Stabilization and Optimality Results for Attitude Control Problem,” AIAA Journal of Guidance, Control, and Dynamics, 19(4), pp.772-779, 1996.
[28] Vadali, S. R., “Variable-structure Control of Spacecraft Large-angle Maneuvers,” AIAA Journal of Guidance, Control, and Dynamics, 9(2), pp.235-239, 1986.
[29] Van der Schaft, A.J., “ gain Analysis of Nonlinear Systems and Nonlinear State Feedback Control,” IEEE Transaction on Automatic Control, 37(6), pp. 770-784, 1992.
[30] Weiss H., “Quaternion-Based Rate/Attitude Tracking System with Application to Gimbal Attitude Control,” AIAA Journal of Guidance Control, and Dynamics, 16(4), pp. 609-616, 1993.
[31] Wen, J. T. Y., and Kreutz Delgado, K., “The Attitude Control Problem,” IEEE Transaction on Automatic Control, 36(10), pp.1148-1162,1991.
[32] Wertz, J. R., Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, 1986.
[33] Wie, B., and Barba, P. M., “Quaternion Feedback for Spacecraft Large Angle Maneuvers,” AIAA Journal of Guidance, Control, and Dynamics, 8(3), pp.360-365, 1985.
[34] Wong, H., De Queiroz, M. S., and Kapila, V., “Adaptive Tracking Control Using Synthesized Velocity From Attitude Measurements,” Proceedings of American Control Conference, pp.1572-1576, 2000.
[35] Wu, C. S., Chen, B. S., and Jan, Y. W., “Unified Design for and Mixed Control of Spacecraft,” AIAA Journal of Guidance Control, and Dynamics. 22(6), pp.884-896, 1999.
[36] Wu, C. S., and Chen, B. S., “Adaptive Attitude Control of Spacecraft: Mixed Approach,” AIAA Journal of Guidance Control, and Dynamics. 24(4), pp.755-766, 2001.
[37] Xing G. Q., and Parvez, S. A., “Nonlinear Attitude State Tracking Control for Spacecraft,” AIAA Journal of Guidance Control, and Dynamics, 24(3), pp. 624-626, 2001.
[38] Yang, C. D., and Kung, C. C., “Nonlinear Flight Control of General Six Degree-of-freedom Motions,” AIAA Journal of Guidance, Control, and Dynamics, 23(2), pp.278-288, 2000.