簡易檢索 / 詳目顯示

研究生: 劉光庭
Liu, Kuang-Ting
論文名稱: 應用在混合參數變動飽和系統的觀測基底追蹤器:混沌進化演算法
An Observer-Based Tracker for Hybrid Interval Chaotic Systems with Saturating Actuators: The Choas-Evolutionary-Programming Apporach
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 70
中文關鍵詞: 混沌搜尋混沌進化演算法
外文關鍵詞: Chaotic search, Choas-Evolutionary-Programming Apporach
相關次數: 點閱:50下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種新的進化演算法混合沌混變數的搜尋方法,命名為混沌進化演算法。由於混沌變數具有虛擬隨機、遍歷性和不規則的特性,使得混沌進化演算法的子代族群可以遍歷性的分佈在搜尋的空間且可較快收斂到最佳解。然後我們利用混沌進化演算法去找到混合參數變動飽和系統的雙速率觀測基底追蹤器。混沌進化演算法可以更容易跳出局部極大或極小值,而找到全域的極大或極小值。最後,以一個例子來驗證這個方法的有效性。

    A novel evolutionary-programming (EP) algorithm including chaotic variable named chaos-evolutionary-programming algorithm (CEPA) has been proposed in this thesis. Due to the nature of chaotic variable, i.e. pseudo-randomness, ergodicity and irregularity, the evolutional process of CEPA makes the individuals of subgenerations distributed ergodically in the defined space and circumvents the premature of the individuals of subgenerations. Then a dual-rate observer-based tracker for a hybrid interval chaotic system with saturating actuators by using the CEPA is developed. The CEPA can search many local minimum or maximum in parallel and thereby increasing the probability of finding the global one. An illustrative example is presented to demonstrate the effectiveness of the proposed algorithm.

    Chinese Abstract Ⅰ Abstract Ⅱ List of Figures Ⅴ Chapter 1. Introduction 1-1 2. A Dual-Rate Observer-Based Tracker for Hybrid Chaotic Systems with Saturating Actuators 2-1 2.1 Introduction 2-1 2.2 Optimal Linearization 2-3 2.3 Analog Linear Quadratic Tracker and Observer Design 2-6 2.4 Derivation of The Observer-Based Tracker for The Linear Sampled-Data System 2-8 2.5 A Digitally Redesigned Observer-Based Tracker of Linear Conditioning with Inner State Compensator for Hybrid Chaotic Systems 2-16 3. An Observer-Based Tracker for Hybrid Interval Chaotic Systems with Saturating Actuators: The Chaos-Evolutionary-Programming Approach 3-1 3.1 Introduction 3-1 3.2 The Chaos System Selected for Optimization 3-2 3.3 The Chaos-Evolutionary-Programming Approach 3-6 3.4 Application of The CEPA 3-12 3.5 The CPEA Tracker Scheme for Uncertain Nonlinear Time-Invariant Interval Systems 3-16 3.6 Computer Simulation 3-18 4. Conclusions 4-1 References Acknowledgments

    [1] B. Li, W. S. Jiang, “Optimizing complex functions by chaos search,” Cybernetics and Systems, vol. 29, pp. 409-419, 1998.
    [2] C. Y. Lin, J. S. H. Tsai, L. S. Shieh and S. M. Guo,“A new conditioning dual-rate observer based tracker for hybrid chaotic systems with saturating actuators,” International Journal of Systems Science, vol. 35, no. 1, pp. 25-47, 2003.
    [3] B. C. Kuo, Digital Control Systems, New York :Holt, Rinehart and Winston, 1980.
    [4] S. M. Guo, L. S. Shieh, G. Chen, C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems–I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
    [5] F. L. Lewis, and V. L. Syrmos, Optimal Control, New York: John Wiley, 1986.
    [6] Y. Peng, and D. Vrancic, R. Hanus, “Anti-windup, bumpless, and conditioned transfer techniques for PID controllers,” IEEE Control Systems Magazine, vol. 16, pp. 48-57, 1996.
    [7] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Reading, MA: Addison-Wesley, pp 59-88, 1989.
    [8] S. C. Kramer & R. C. IV. Martin, “Direct optimization of gain scheduled trackers via genetic algorithms,” Journal of Guidance, Control, and Dynamics, vol. 19, pp. 636-642, 1996.
    [9] K. Krishnakumar & D. E. Goldgerg, “Control system optimization using genetic algorithm,” Journal of Guidance, Control, and Dynamics, vol. 15, pp.735-740, 1992.
    [10] K. F. Man, K. S. Tang & S. Kwang, Genetic algorithms: Concepts and design, London: Springer, 1999.
    [11] D. B. Fogel, Evolutionary Computation: The Fossil Record, New Jersey: IEEE Press, 1998.
    [12] D. B. Fogel, “An overview of evolutionary programming,” Evolutionary Algorithms, L. D. Davis, K. D. Jong, M. D. Vose, and L. D. Whitley, Eds, New York: Springer-Verlag, IMA-vol. 11, pp.89-109, 1999.
    [13] K. Lu, J. H. Sun, R. B. Ou, and L. Y. Huang., Chaos dynamics, Shanghan: shanghai Translation Press Company, 1990.
    [14] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematik, vol. 2, pp. 84-90, 1960 with Corrigenda on p. 196.
    [15] J. M. Hammersley& D. C. Handscomb, Monte Carlo Methods, London: Methuen, 1964.
    [16] J. C. Van Der Corput, “Verteilungsfunktionen,” Proc. Kon Akad. Wet., Amsterdam, vol. 38, pp. A13-A21, pp. 1058-1066, 1935.
    [17] Y. J. Cao, “Eigenvalue optimization problems via evolutionary programming,” Electronics Letters, vol. 33, pp. 642-643, 1997.
    [18] J. C. Potts, T. D. Giddens, and S. B. Yadav., “The development and evaluation of an improved genetic algorithm based on migration and artificial selection,” IEEE Trans. Syst. Man Cybernet, vol. 24, no. 1, pp. 73-85, 1994.
    [19] J. N. Juang, Applied System Identification, New Jersey: Prentice-Hall, 1994.
    [20] G. Chen, and T. Ueta, “Yet another chaotic attractor,” Int. J. Bifurcation and Chaos, vol. 9, pp. 1465-1466, 1999.
    [21] T. Ueta, and G. Chen, “Bifurcation analysis of Chen’s equation,” Int. J. Bifurcation and Chaos, vol 10, pp. 1917-1931, 2000.

    下載圖示 校內:2005-07-06公開
    校外:2005-07-06公開
    QR CODE