| 研究生: |
黃俊瑞 Huang, Jun-Rui |
|---|---|
| 論文名稱: |
氮化鎵系列蕭特基接觸式氫氣感測元件之研究 Investigation of Hydrogen-Sensing GaN-Based Schottky Contact Devices |
| 指導教授: |
劉文超
Liu, Wen-Chau 許渭州 Hsu, Wei-Chou |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 198 |
| 中文關鍵詞: | 氫氣感測器 、蕭特基二極體 、白金 、鈀 、氮化鎵 、絕緣層 |
| 外文關鍵詞: | Pd, Hydrogen sensor, Schottky diode, Pt, GaN, Insulator |
| 相關次數: | 點閱:74 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研製一系列氮化鎵蕭特基接觸式的氫氣感測器元件,並以不同的觸媒金屬,像鈀和白金,製作成蕭特基接觸金屬,主要重點在於展示高靈敏度以及寬廣溫度操作範圍;另外,本文以不同高品質且薄的絕緣層,像二氧化矽和氮化矽,製作成金屬/絕緣層/半導體的蕭特基二極體式氫氣感測器,本文所提出元件是在空氣和氮氣環境下通入不同的氫氣濃度去研究其氫氣感測及響應特性。
首先,鈀金屬/氮化鎵半導體的蕭特基接觸式氫氣感測器被製作和研究,由於具有寬能隙及較好的熱穩定度的良好特性,在與傳統矽半導體所研製的感測器作比較之後,本文所提出氮化鎵為基底的金屬/半導體式的氫氣感測器在經過寬廣溫度圍展示較佳的偵測靈敏度和較大的蕭特基能障變化;另外,在與空氣環境下特性作比較,本文所提出鈀金屬/氮化鎵半導體的蕭特基元件在氮氣環境下展示較高的氫氣偵測能力及較大的蕭特基能障調變。
接著,白金金屬/二氧化矽絕緣層/氮化鎵半導體的蕭特基接觸式氫氣感測器被製作和研究,為了研究費米能階釘住效應對氫氣感測的影響,白金金屬/氮化鎵半導體的元件也一併被製作和比較,從實驗結果得知,在與白金金屬/氮化鎵半導體的元件作比較之後,本文所提出白金金屬/二氧化矽絕緣層/氮化鎵半導體的元件證實有較大的電流和蕭特基能障變化、在順偏或反偏之下有較高的氫氣偵測能力、以及較短的響應和恢復時間,因此,沒有絕緣層的存在,費米能階釘住效應對金屬/半導體的元件影響較嚴重而且會造成氫氣測偵測能力的下降。
最後,白金金屬/氮化矽絕緣層/氮化鎵半導體的蕭特基接觸式氫氣感測器被製作和研究,連同之前所提出的白金金屬/二氧化矽絕緣層/氮化鎵半導體的元件,在與其它已提出觸媒金屬/絕緣層/半導體的氫氣感測器作比較,本文所提出的兩個具有絕緣層的元件在經過寬廣溫度範圍均展示良好的氫氣感測特性;此外,兩個元件亦展示可再現性的響應,在與白金金屬/氮化矽絕緣層/氮化鎵半導體的元件作比較,白金金屬/二氧化矽絕緣層/氮化鎵半導體的元件在室溫空氣環境之下有較明顯的靈敏度變化的改善;另一方面,白金金屬/氮化矽絕緣層/氮化鎵半導體的元件在氮氣環境比在空氣下展示有較佳的高溫偵測特性以及改善氫氣吸附反應的活性,因此,以氮化鎵為基底具有高品質且薄之絕緣層的感測器能提供重大的潛在性,其多樣性的應用就是在特別高溫之下仍具有較高的氫氣靈敏度感測器並且可以整合光電感測器使其具有額外紫外光的偵測。
In this dissertation, we present a series of hydrogen-sensing GaN-based Schottky contact devices. The different catalytic metals, e.g., Pd and Pt, are used as the Schottky contact metals. The main concerns demonstrate the high hydrogen sensing performance and widespread operating temperature. In addition, the different high-quality thin insulators, such as SiO2 and SiNx, are used as the metal/insulator/semiconductor (MIS) Schottky diode hydrogen sensors. The hydrogen sensing and response characteristics of the studied devices under different-concentration hydrogen gases are investigated both in air and N2 atmospheres.
First, a Pd/GaN (MS) Schottky contact hydrogen sensor is fabricated and investigated. Due to the good properties of wide bandgap and superior thermal stability, the studied GaN-based MS-type hydrogen sensor exhibits the better detection sensitivity ratio and larger Schottky barrier height variations over a wide temperature range as compared with the conventional Si-based sensors. In addition, the studied MS device exhibits the higher hydrogen detection capability and larger Schottky barrier height modulation in N2 atmosphere in comparison with those in air.
Second, a Pt/SiO2/GaN (MIS) Schottky contact hydrogen sensor is fabricated and investigated. In order to study the influence of Fermi-level pinning effect and hydrogen sensing, the Pt/GaN MS device is also fabricated and compared. From experimental results, the studied MIS device manifests larger current and Schottky barrier height variations, higher hydrogen detection capabilities under either forward or reverse bias, and shorter hydrogen response and recovery times than that of the MS-type hydrogen sensor. Therefore, without the presence of the insulator layer, Fermi-level pinning effect is more serious for the MS device and results in the degradation of hydrogen detection.
Finally, a Pt/SiNx/GaN (MIS) Schottky contact hydrogen sensor is fabricated and investigated. Along with the studied Pt/SiO2/GaN MIS device, both studied MIS devices exhibit good hydrogen sensing performances over a wide temperature range as compared with other reported MIS-type hydrogen sensors. Furthermore, both studied MIS devices also exhibit reproducible responses. As compared with those of the Pt/SiNx/GaN (MIS) device, the improvements of sensitivity variation are more obvious for the studied Pt/SiO2/GaN (MIS) device at 300 K in an air atmosphere. On the other hand, the studied Pt/SiNx/GaN (MIS) device exhibits excellent performance for high-temperature detection and improved activity of hydrogen adsorption reaction in a N2 atmosphere than in air. Therefore, the GaN-based sensors with a high-quality thin insulator layer provide the great potential in a variety of applications of high hydrogen-sensitivity gas sensors especially at high temperature and integrated optoelectronic sensor structures for additional detection of UV radiation.
References
[1] R. C. Weast, “Handbook of chemistry and physics,” Cleveland: CRC press, p.
F-35, 1976.
[2] W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” Weinheim: VCH press, vol. 1,
ch. 10, 1991.
[3] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid
state gas sensor devices,” New York: John Wily & Sons, ch. 3, 1993.
[4] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu,
and W. C. Liu, “Pd-Oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor
(HEMT)-based hydrogen sensor,” IEEE Sensors J. vol. 6, pp. 287–292, 2006.
[5] K. I. Lundstrom, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive
Pd-gate MOS transistor,” J. Appl. Phys., vol. 46, pp.3876-3881, 1975.
[6] D. Briand, H. Sundrgen, B. van der Schoot, I. Lundstrom, and N. F. de. Rooij,
“Thermally isolated MOSFET for gas sensing application,” IEEE Electron
Device Lett., vol. 22, pp. 11-13, 2001.
[7] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu,
and W. C. Liu, “Pd-Oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor
(HEMT)-based hydrogen sensor,” IEEE Sensors J. vol. 6, pp. 287–292, 2006.
[8] G. W. Hunter, P. G. Neudeck, L. Y. Chen, D. Knight, C. C. Liu, and Q. H. Wu,
“Microfabricated chemical sensors for safety and emission control applications,”
in Proc. 17th Digital Avionics Systems Conf., vol. 1, pp. D11/1-D11/8, 1998.
[9] A. Arbab, A. Spetz, and I. Lundstrom “Gas sensors for high-temperature
operation-based on metal-oxide-silicon-carbide (MOSiC) devices,” Sens.
Actuators B. Chem., vol. 15-16, pp. 19-23, 1993.
[10] C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang,
“Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high
83
temperature,” J. Electron. Mater. vol. 28, pp. 202-205, 1999.
[11] K. Dobos, M. Armgerth, G. Zimmer, I. Lundstrom, “The influence of different
insulators on palladium-gate metal-insulator-semiconductor hydrogen sensors,”
IEEE Trans. Electron Devices, vol. 31, pp. 508-510, 1984.
[12] M. Armgarth and C. Nylander, “A stable hydrogen-sensitive Pd gate metal-oxide
semiconductor capacitor,” Appl. Phys. Lett., vol. 39, pp. 91-92, 1981.
[13] M. Armgarth, D. Soderberg, and I. Lundstrom, “Palladium and platinum gate
metal-oxide-semiconductor capacitors in hydrogen and oxygen mixtures,” Appl.
Phys. Lett., vol. 41, pp. 654-655, 1982.
[14] M. Armgarth and C. Nylander, “Blister formation in Pd gate MIS hydrogen
sensors,” IEEE Electron Device Lett., vol. 3, pp. 384-386, 1982.
[15] C. Nylander, M. Armgarth, and C. Svensson, “Hydrogen induced drift in
palladium gate metal-oxide-semiconductor substrates,” J. Appl. Phys., vol. 56,
pp. 1177-1188, 1984.
[16] T. L. Poteat, B. Lalevi? , B. Kuliyev, M. Yousuf, and M. Chen, “MOS and
Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mater.,
vol. 12, pp. 181-214, 1983.
[17] T. L. Poteat and B. Lalevi?, “Pd-MOS hydrogen and hydrocarbon sensor
device,” IEEE Electron Device Lett., vol. 2, pp. 82-84, 1981.
[18] T. L. Poteat and B. Lalevi?, “Transition metal-gate MOS gaseous detectors,”
IEEE Trans. Electron Devices, vol. 29, pp. 123-129, 1982.
[19] U. Ackelid, M. Armgarth, A. Spetz, and I. Lundstrom, “Ethanol sensitivity of
palladium-gate metal-oxide-semiconductor structures,” IEEE Electron Device
Lett., vol. 7, pp. 353-355, 1986.
[20] I. Lundstrom, A. Spetz, F. Winquist, U. Ackelid, and H. Sundgren, “Catalytic
metals and field-effect devices - a useful combination,”Sens. Actuator B-Chem.,
84
vol. 1, pp. 15-20, 1990.
[21] F. Winquist, A. Spetz, M. Armgarth, M. Armgarth, and B. Danielsson,
“Biosensors based on ammonia sensitive metal-oxide-semiconductor structures,”
Sens. Actuator B-Chem., vol. 8, pp. 91-100, 1985.
[22] I. Lundstrom, M. Armgarth, A. Spetz, and F. Winquist, “Gas sensors based on
catalytic metal-gate field-effect devices,” Sens. Actuator B-Chem., vol. 10, pp.
399-421, 1986.
[23] A. Ortiz, S. Lopez, J. C. Alonso, and S. Muhl, “Hydrogen-sensitive
Ni-SiO2a-Si-H Schottky diodes,” Thin Solid Films, vol. 207, pp. 279-282, 1992.
[24] H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. V.
McFarland, “Ultrathin Cu films on Si(111): Schottky barrier formation
andsensor applications,” J. Vac. Sci. Technol. A, vol. 17, pp. 1683-1687, 1999.
[25] H. Nienhaus, H. S. Bergh, B. Gergen, and A. Majumdar, W. H. Weinberg, and E.
V. McFarland, “Selective H atom sensors using ultrathin Ag-Si Schottkydiodes”
Appl. Phys. Lett., vol. 74, pp. 4046-4048, 1999.
[26] J. Liu, G. R. Oritz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of
hydrogenon the barrier height of a titanium Schottky didoe on p-type silicon,”
Phys. Rev. B, vol. 44, pp. 8918-8922, 1991.
[27] S. X. Jin, L. pp. Wang, M. H. Yuan, J. J. Chen, Y. Q. Jia, and G. G. Jia, “Effects
of hydrogen on the Schottky-barrier of Ti/n-GaAs diodes,” J. Appl. Phys., vol.
71, pp. 536-538, 1992.
[28] Y. Q. Jia and G. G. Qin, “Effects of hydrogen on Al/p-Si Schottky diodes,” Appl.
Phys. Lett., vol. 56, pp. 641-643, 1990.
[29] L. M. Lechuga, A. Calle, D. Golmayo, pp. Tejedor, and F. Briones, “A new
hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., vol.
138, pp. 159-162, 1991.
85
[30] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Hydrogen sensor based
on a Pt/GaAs Schottky diode,” Sens. Actuator B-Chem., vol. 4, pp. 551-558,
1991.
[31] N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, “A study on a
palladium-titanium oxide Schottky diode as a detector for gaseous components,”
Surf. Sci., vol. 92, pp. 400-406, 1980.
[32] H. Kobayashi, K. Kishimoto, and Y. Nakato, “Reactions of hydrogen at the
interface of palladium-titanium dioxide Schottky diodes as hydrogen sensors,
studied by work function and electrical characteristic measurements,” Surf. Sci.,
vol. 306, pp. 393-405, 1994.
[33] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic
metals (Pt, Pd and Ir) for GaAs Schottky-barrier sensors,” Sens. Actuator
B-Chem., vol. 7, pp. 614-618, 1992.
[34] S. Roy, C. Jacob, C. Lang, and S. Basu, “Studies on Ru/3C-SiC Schottky
junctions for high temperature hydrogen sensors,” J. Electrochem. Soc., vol. 150,
pp. H135-H139, 2003.
[35] D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs
-platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci.
Technol. B, vol. 1, pp. 602-607, 1983.
[36] T. Akin, B Ziaie, S. A. Nikles, and K. Najafi, “A modular micromachined
high-density connector system for biomedical applications,” IEEE Trans. Biomed.
Eng., vol. 46, pp. 471-480, Apr. 1999.
[37] A. Dittmar and K. Najafi, “Special topic section on microtechniques,
microsensors, microactuators, and microsystems,” IEEE Trans. Biomed. Eng.,
vol. 47, pp. 1-2, Jan. 2000.
[38] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling
86
of hydrogen adsorption/absorption in thin films on hydrogen-sensitive
field-effect devices: Observation of large hydrogen-induced dipoles at the
Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, July 1995.
[39] M. Lofdahl, M. Eriksson, M. Johansson, and I. Lundstrom, “Difference in
hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol.
91, pp. 4275-4280, April 2002.
[40] D. Briand, H. Sundgren, B. van der Schoot, I. Lundstrom, and N. F. de Rooij,
“Thermally isolated MOSFET for gas sensing application,” IEEE Electron
Device Lett., vol. 22, pp. 11–13, Jan. 2002.
[41] A. E. Abom, R. T. Haasch, N. Hellgren, N. Finnegan, L. Hultman, and M.
Eriksson, “Characterization of the metal-insulator interface of field-effect
chemical sensors,” J. Appl. Phys., vol. 93, pp. 9760-9768, June 2003.
[42] H. Wingbrant, I. Lundstrom, and A. Lloyd Spetz, “The speed of response of
MISiCFET devices,” Sens. Actuators B. Chem., vol. 93, pp. 286-294, 2003.
[43] K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. C. Chen, and W. C.
Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode
hydrogen sensor,” Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
[44] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W.
C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE
Sensors J., vol. 4, pp. 72–79, Feb. 2004.
[45] L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new
hydrogen sensor based on a Pt/GaAs schottky diode,” Sens. Actuators B. Chem.,
vol. 4, pp. 515-518, 1991.
[46] Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee, “Trench Pd/Si
metal-oxide-semiconductor Schottky barrier diode for a high sensitivity
hydrogen gas sensor,” Appl. Phys. Lett., vol. 57, pp. 2686-2688, 1990.
87
[47] W. P. Kang and Y. Gurbuz, “Comparison and analysis of Pd- and Pt-GaAs
Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181,
1994.
[48] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A
new Pd-Oxide-Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett.,
vol. 24, pp. 390-392, June 2003.
[49] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C.
Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of
Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, vol. 50, pp.
2532–2539, Dece. 2003.
[50] I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, “A
hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol. 26, pp.
55-57, 1975.
[51] D. Dwivedi, R. Dwivedi, and S. K. Srivastava, “Sensing properties of
palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon
dioxide,” Sens. Actuators B. Chem., vol. 71, pp. 161-168, 2000.
[52] J. W. Hammond and C. C. Liu, “Silicon based microfabricated tin oxide gas
sensor incorporating use of Hall effect measurement,” Sens. Actuators B. Chem.,
vol. 81 pp. 25-31, 2001.
[53] B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky
diode gas sensors on n-type GaN,” Sens. Actuators B. Chem., vol. 56, pp.
164-168, 1999.
[54] A. Arbab, A. Spetz, and I. Lunstrom, “Gas sensors for high-temperature
operation-based on metal-oxide-silicon-carbide (MOSiC) devices,” Sens.
Actuators B. Chem., vol. 15-16, pp. 19-23, 1993.
[55] A. Baranzahi, A. L. Spetz, B. Andersson, and I. Lundstrom, “Gas sensitive field
88
effect devices for high temperature,” Sens. Actuators B, Chem., vol. 26, pp.
165–169, 1995.
[56] C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang,
“Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high
temperature,” J. Electron. Mat. vol. 28, pp. 202-205, 1999.
[57] A. Lloyd Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. G. Ekedahl, and I.
Lundstrom, “High temperature catalytic metal field effect transistors for
industrial applications,” Sens. Actuators B, Chem., vol. 70, pp. 67–76, 2000.
[58] C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I. Cho, C. Hong,
and G. E. Jang, “Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at
high temperature,” Sens. Actuators B, Chem., vol. 77, pp. 455–462, 2001.
[59] A. Trinchi, K. Galatsis, W. Wlodarski, and Y. X. Li, “A Pt/Ga2O3-ZnO/SiC
Schottky diode-based hydrocarbon gas sensor,” IEEE Sensors J., vol. 3, pp.
548–553, 2003.
[60] J. Li, W. R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal
ultraviolet photodetectors on GaN with submicro finger width,” IEEE Photonics
Technol. Lett., vol. 15, pp. 1141-1143, August 2003.
[61] M. Mosca, J. L. Reverchon, N. Grandjean, and J. Y. Duboz, “Multilayer
(Al,Ga)N structures for solar-blind detection, ” IEEE J. Sel. Top. Quantum
Electron., vol. 10, pp. 752-758, 2004.
[62] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T.
Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on
semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20,
pp. 161-163, 1999.
[63] R. Gaska, Q. Chen, J. Yang, A. Qsinsky, M. Asif Khan, and M. S. Shur,
“High-temperature performance of AlGaN/GaN HFET’s on SiC substrates,”
89
IEEE Electron Device Lett., vol. 18, pp. 492-494, 1997.
[64] J. Schalwig, G. Muller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L.
Gorgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky
diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
[65] J. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Reversible barrier
height changes in hydrogen-sensitive Pd/GaN and Pt/GaN diodes,” Appl. Phys.
Lett., vol. 82, pp. 739-741, 2003.
[66] J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren,
“Hydrogen-sensitive GaN Schottky diodes,” Solid-State Electron., vol. 47, pp.
1069-1073, 2003.
[67] I. Lundstrom and L. G. Petersson, “Chemical sensors with catalytic metal gates,”
J. Vac. Sci. Technol A., vol. 14, pp. 1539-1545, 1996.
[68] F. A. Lewis, The Palladium Hydrogen System, New York: Academic, 1967.
[69] M. Z. Atashbar, D. Banerji, and S. Singamaneni, “Room-temperature hydrogen
sensor based on palladium nanowires,” IEEE Sensors J., vol. 5, pp. 792–797,
2005.
[70] M. Johansson, I. Lundstrom, and L. G. Ekedahl, “Bridging the pressure gap for
palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing
environments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998.
[71] S. M. Sze, Physics of Semiconductor Devices, second ed., Wiley, New York,
1981 (Chapter 2).
[72] M. W. Cole, D. W. Eckart W. Y. Han, R. L. Pfeffer, T. Monahan, F. Ren, C. Yuan,
R. A. Stall, S. J. Pearton, Y. Li, and Y. Lu, “Thermal stability of W ohmic
contacts to n-type GaN,” J. Appl. Phys., vol. 80, pp. 278-281, 1996.
[73] M. Eriksson and L. G. Ekedahl, “Hydrogen adsorption states at the Pd/SiO2
interface and simulation of the response of a Pd metal-oxide-semiconductor
90
hydrogen sensor,” J. Appl. Phys., vol. 83, pp. 3947-3951, 1998.
[74] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu,
“Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode
hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, Sept.
2001.
[75] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas
detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
[76] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative
hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor
Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254–6289, 2001.
[77] R. J. Silbey and R. A. Alberty, Physical Chemistry, third ed., Wiley, New York,
2001.
[78] M. Eriksson, I. Lundstrom, and L. G. Ekedahl, “A model of the Temkin isotherm
behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., vol. 82,
pp. 3143-3146, Sept. 1997.
[79] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu,
“Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky
diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
[80] B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton,
“Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection,”
Sens. Actuators B, vol. 104, pp. 232-236, 2005.
[81] W. Liu, “Handbook of III-V Heterojunction Bipolar Transistors,” Wiley, New
York, 1998.
[82] A. Voskoboynikov, S. H. Liu, and C. P. Lee, “Spin-dependent delay time in
electronic resonant tunneling at zero magnetic field,” Solid State Commun., vol.
115, pp. 477-481, 2000.
91
[83] J. Li, W.R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal
ultraviolet photodetectors on GaN with submicro finger width,” IEEE Photonics
Technol. Lett., vol. 15, pp. 1141-1143, 2003.
[84] T. Iwanaga, T. Hyodo, Y. Shimizu, and M. Egahira, “H2 sensing properties and
mechanism of anodically oxidized TiO2 film contacted with Pd electrode,” Sens.
Actuators B, vol. 93, pp. 519-525, 2003.
[85] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen
sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18,
2002.
[86] R. C. Weast, “Handbook of Chemistry and Physics,” p. F-35, Cleveland: CRC
press, 1976.
[87] B. S. Kang, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton,
“AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas
sensor,” Appl. Phys. Lett., vol. 84, pp. 1123-1125, 2004.
[88] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “Pt-AlGaN/GaN Schottky diodes
operated at 800°C for hydrogen sensing,” Appl. Phys. Lett., vol. 87, pp. 133501,
2005.
[89] M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik,
and O. Ambacher, “Pt/GaN Schottky diodes for hydrogen gas sensors,” Sens.
Actuators B, vol. 113, pp. 797-804, 2006.
[90] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption
kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,”
Sens. Actuators B, vol. 92, pp. 6-16, 2003.
[91] S. Nakagomi, P. Tobias, A. Baranzahi, I. Lundstrom, P. Martensson, and A. L.
Spetz, “Influence of carbon monoxide, water and oxygen on high temperature
catalytic metal-oxide-silicon carbide structures,” Sens. Actuators B, vol. 45, pp.
92
183-191, 1997.
[92] L. Y. Chen, G. W. Hunter, P. G. Neudeck, and D. Knight, “Surface and interface
properties of PdCr/SiC Schottky diode gas sensor annealed at 425°C,”
Solid-State Electron., vol. 42, pp. 2209-2214, 1998.
[93] P. Tobias, P. Martensson, A. Goras, I. Lundstrom, and A. L. Spetz, “Moving gas
outlets for the evaluation of fast gas sensors,” Sens. Actuators B, vol. 58, pp.
389-393, 1999.
[94] S. Nakagomi, K. Okuda, and Y. Kokubun, “Electrical properties dependent on H2
gas for new structure diode of Pt-thin WO3-SiC,” Sens. Actuators B, vol. 96, pp.
364-371, 2003.
[95] S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri,
“Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC
devices,” Sens. Actuators B, vol. 111-112, pp. 111-116, 2005.
[96] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C.
T. Lu, “A new Pt/oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor,”
IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002.
[97] J. P. Xu, P. T. Lai, D. G. Zhong, and C. L. Chan, “Improved hydrogen-sensitive
properties of MISiC Schottky sensor with thin NO-grown oxynitride as gate
insulator,” IEEE Electron. Device Lett., vol. 24, pp. 13-15, 2003.
[98] C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu,
“A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor,” IEEE Electron.
Device Lett., vol. 27, pp. 951-954, 2006.
[99] W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” VCH press, Weinheim, vol. 2, ch.
11, 1991.
[100] M. Eriksson, A. Salomonsson, I. Lundstrom, D. Briand, and A. E. Abom, “The
influence of the insulator surface properties on the hydrogen response of
93
field-effect gas sensors,” J. Appl. Phys., vol. 98, pp. 034903, 2005.
[101] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu,
“Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky
diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003.
[102] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu,
“Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky
diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
[103] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, “High H2 sensing
performance of anodically oxidized TiO2 film contacted with Pd,” Sens.
Actuators B, vol.83, pp. 195-201, 2002.
[104] I. Lundstrom, “Hydrogen sensitive MOS structures. Part 1. Principles and
applications,” Sens. Actuators B, vol. 1, pp. 403-426, 1981.
[105] I. Lundstrom, “Hydrogen sensitive MOS structures. Part 2. Characterization,”
Sens. Actuators B, vol. 2, pp. 105-138, 1981/1982.
[106] H. Svenningstorp, B. Widen, P. Salomonsson, L. G. Ekedahl, I. Lundstrom, P.
Tobias, and A. L. Spetz, “Detection of HC in exhaust gases by an array of MISiC
sensors,” Sens. Actuators B, vol. 77, pp. 177-185, 2001.
[107] M. Lofdahl, M. Eriksson, M. Johansson, and I. Lundstrom, “Difference in
hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol.
91, pp. 4275-4280, 2002.
[108] L. G. Petersson, H. M. Dannetun, and I. Lundstrom, “The water-forming reaction
on palladium,” Surf. Sci., vol. 161, pp. 77-100, 1985.