簡易檢索 / 詳目顯示

研究生: 黃俊瑞
Huang, Jun-Rui
論文名稱: 氮化鎵系列蕭特基接觸式氫氣感測元件之研究
Investigation of Hydrogen-Sensing GaN-Based Schottky Contact Devices
指導教授: 劉文超
Liu, Wen-Chau
許渭州
Hsu, Wei-Chou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 198
中文關鍵詞: 氫氣感測器蕭特基二極體白金氮化鎵絕緣層
外文關鍵詞: Pd, Hydrogen sensor, Schottky diode, Pt, GaN, Insulator
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研製一系列氮化鎵蕭特基接觸式的氫氣感測器元件,並以不同的觸媒金屬,像鈀和白金,製作成蕭特基接觸金屬,主要重點在於展示高靈敏度以及寬廣溫度操作範圍;另外,本文以不同高品質且薄的絕緣層,像二氧化矽和氮化矽,製作成金屬/絕緣層/半導體的蕭特基二極體式氫氣感測器,本文所提出元件是在空氣和氮氣環境下通入不同的氫氣濃度去研究其氫氣感測及響應特性。
    首先,鈀金屬/氮化鎵半導體的蕭特基接觸式氫氣感測器被製作和研究,由於具有寬能隙及較好的熱穩定度的良好特性,在與傳統矽半導體所研製的感測器作比較之後,本文所提出氮化鎵為基底的金屬/半導體式的氫氣感測器在經過寬廣溫度圍展示較佳的偵測靈敏度和較大的蕭特基能障變化;另外,在與空氣環境下特性作比較,本文所提出鈀金屬/氮化鎵半導體的蕭特基元件在氮氣環境下展示較高的氫氣偵測能力及較大的蕭特基能障調變。
    接著,白金金屬/二氧化矽絕緣層/氮化鎵半導體的蕭特基接觸式氫氣感測器被製作和研究,為了研究費米能階釘住效應對氫氣感測的影響,白金金屬/氮化鎵半導體的元件也一併被製作和比較,從實驗結果得知,在與白金金屬/氮化鎵半導體的元件作比較之後,本文所提出白金金屬/二氧化矽絕緣層/氮化鎵半導體的元件證實有較大的電流和蕭特基能障變化、在順偏或反偏之下有較高的氫氣偵測能力、以及較短的響應和恢復時間,因此,沒有絕緣層的存在,費米能階釘住效應對金屬/半導體的元件影響較嚴重而且會造成氫氣測偵測能力的下降。
    最後,白金金屬/氮化矽絕緣層/氮化鎵半導體的蕭特基接觸式氫氣感測器被製作和研究,連同之前所提出的白金金屬/二氧化矽絕緣層/氮化鎵半導體的元件,在與其它已提出觸媒金屬/絕緣層/半導體的氫氣感測器作比較,本文所提出的兩個具有絕緣層的元件在經過寬廣溫度範圍均展示良好的氫氣感測特性;此外,兩個元件亦展示可再現性的響應,在與白金金屬/氮化矽絕緣層/氮化鎵半導體的元件作比較,白金金屬/二氧化矽絕緣層/氮化鎵半導體的元件在室溫空氣環境之下有較明顯的靈敏度變化的改善;另一方面,白金金屬/氮化矽絕緣層/氮化鎵半導體的元件在氮氣環境比在空氣下展示有較佳的高溫偵測特性以及改善氫氣吸附反應的活性,因此,以氮化鎵為基底具有高品質且薄之絕緣層的感測器能提供重大的潛在性,其多樣性的應用就是在特別高溫之下仍具有較高的氫氣靈敏度感測器並且可以整合光電感測器使其具有額外紫外光的偵測。

    In this dissertation, we present a series of hydrogen-sensing GaN-based Schottky contact devices. The different catalytic metals, e.g., Pd and Pt, are used as the Schottky contact metals. The main concerns demonstrate the high hydrogen sensing performance and widespread operating temperature. In addition, the different high-quality thin insulators, such as SiO2 and SiNx, are used as the metal/insulator/semiconductor (MIS) Schottky diode hydrogen sensors. The hydrogen sensing and response characteristics of the studied devices under different-concentration hydrogen gases are investigated both in air and N2 atmospheres.
    First, a Pd/GaN (MS) Schottky contact hydrogen sensor is fabricated and investigated. Due to the good properties of wide bandgap and superior thermal stability, the studied GaN-based MS-type hydrogen sensor exhibits the better detection sensitivity ratio and larger Schottky barrier height variations over a wide temperature range as compared with the conventional Si-based sensors. In addition, the studied MS device exhibits the higher hydrogen detection capability and larger Schottky barrier height modulation in N2 atmosphere in comparison with those in air.
    Second, a Pt/SiO2/GaN (MIS) Schottky contact hydrogen sensor is fabricated and investigated. In order to study the influence of Fermi-level pinning effect and hydrogen sensing, the Pt/GaN MS device is also fabricated and compared. From experimental results, the studied MIS device manifests larger current and Schottky barrier height variations, higher hydrogen detection capabilities under either forward or reverse bias, and shorter hydrogen response and recovery times than that of the MS-type hydrogen sensor. Therefore, without the presence of the insulator layer, Fermi-level pinning effect is more serious for the MS device and results in the degradation of hydrogen detection.
    Finally, a Pt/SiNx/GaN (MIS) Schottky contact hydrogen sensor is fabricated and investigated. Along with the studied Pt/SiO2/GaN MIS device, both studied MIS devices exhibit good hydrogen sensing performances over a wide temperature range as compared with other reported MIS-type hydrogen sensors. Furthermore, both studied MIS devices also exhibit reproducible responses. As compared with those of the Pt/SiNx/GaN (MIS) device, the improvements of sensitivity variation are more obvious for the studied Pt/SiO2/GaN (MIS) device at 300 K in an air atmosphere. On the other hand, the studied Pt/SiNx/GaN (MIS) device exhibits excellent performance for high-temperature detection and improved activity of hydrogen adsorption reaction in a N2 atmosphere than in air. Therefore, the GaN-based sensors with a high-quality thin insulator layer provide the great potential in a variety of applications of high hydrogen-sensitivity gas sensors especially at high temperature and integrated optoelectronic sensor structures for additional detection of UV radiation.

    CONTENTS 摘 要 頁數 CONTENTS …………………………………………………………….I LIST OF TABLES……………………………………………………..IV LIST OF FIGURES…………………………………………………...VI LIST OF SYMBOLS………………………………………………...XIII Chapter 1 Introduction............................................................................. 1 1.1 Hydrogen sensors ................................................................................. 1 1.1.1 Demands of hydrogen energy and sensors ............................................ 1 1.1.2 Criteria and applications of hydrogen sensors ...................................... 2 1.1.3 Types of gas sensors .............................................................................. 3 1.2 Motivation and objective..................................................................... 8 1.2.1 For metal development ......................................................................... 8 1.2.2 For semiconductor development ........................................................... 8 1.2.3 For insulator development .................................................................... 9 1.2.4 Hydrogen sensing performance in air and N2 atmospheres .................. 9 Chapter 2 Experimental details ............................................................. 11 2.1 Devices preparation and fabrication .................................................11 2.1.1 Device structures ................................................................................. 11 2.1.2 Dry etching conditions of GaN ........................................................... 11 2.1.3 Growth conditions of the insulator layers ........................................... 12 2.1.4 Device fabrication ............................................................................... 12 2.2 Hydrogen sensing measurement ....................................................... 13 2.2.1 Hydrogen sensing system setup .......................................................... 13 2.2.2 Hydrogen sensing experiments ........................................................... 13 Chapter 3 Hydrogen sensing characteristics of a Pd/GaN (MS) Schottky diode hydrogen sensor ...................................... 15 3.1 Investigation of hydrogen-sensing characteristics of a Pd/GaN Schottky diode .................................................................................... 15 3.1.1 Introduction ......................................................................................... 15 3.1.2 Device fabrication ............................................................................... 16 3.1.3 Experimental results and discussion ................................................... 17 3.1.4 Summary ............................................................................................. 24 3.2 Comparison of hydrogen sensing characteristics for Pd/GaN and II Pd/Al0.3Ga0.7As Schottky diodes ....................................................... 26 3.2.1 Introduction ......................................................................................... 26 3.2.2 Device fabrication ............................................................................... 27 3.2.3 Experimental results and discussion ................................................... 28 3.2.4 Summary ............................................................................................. 35 3.3 Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres ........................ 36 3.3.1 Introduction ......................................................................................... 36 3.3.2 Device fabrication ............................................................................... 37 3.3.3 Experimental results and discussion ................................................... 38 3.3.4 Summary ............................................................................................. 49 Chapter 4 Hydrogen sensing characteristics of a Pt/insulator/GaN (MIS) Schottky diode hydrogen sensor ............................ 50 4.1 Improved hydrogen sensing characteristics of a Pt/SiO2/GaN (MIS) Schottky diode .................................................................................... 50 4.1.1 Introduction ......................................................................................... 50 4.1.2 Device fabrication ............................................................................... 51 4.1.3 Experimental results and discussion ................................................... 52 4.1.4 Summary ............................................................................................. 60 4.2 Comprehensive study of hydrogen sensing characteristics of a Pt/SiNx/GaN Schottky diode in air and N2 atmospheres ................ 62 4.2.1 Introduction ......................................................................................... 62 4.2.2 Device fabrication ............................................................................... 63 4.2.3 Experimental results and discussion ................................................... 64 4.2.4 Summary ............................................................................................. 70 Chapter 5 Conclusions............................................................................ 72 5.1 Current-voltage characteristics ........................................................ 72 5.1.1 Comparisons of current-voltage characteristics for the studied Pd and Pt/GaN MS devices and other reported hydrogen sensors........................... 72 5.1.1 Comparisons of current-voltage characteristics for the studied Pt/SiO2 and SiNx/GaN MIS devices and other reported hydrogen sensors .............. 72 5.2 Current-time transient responses ..................................................... 74 5.2.1 Comparisons of current-time transient responses for the studied Pd and Pt/GaN MS devices and other reported hydrogen sensors .................... 74 5.2.2 Comparisons of current-time transient responses for the studied Pt/SiO2 and SiNx/GaN MIS devices and other reported hydrogen sensors . 74 5.3 Hydrogen adsorption mechanisms ................................................... 75 5.3.1 The equilibrium adsorption analysis ................................................... 75 III 5.3.2 The kinetic adsorption analysis ........................................................... 76 Chapter 6 Future works ......................................................................... 78 6.1 Alloys of catalytic metal .................................................................... 78 6.2 Morphology and microstructure of catalytic metal ........................ 78 6.3 Morphology and microstructure of GaN semiconductor .............. 79 6.4 Insulator layers .................................................................................. 79 6.5 FET-type hydrogen sensors .............................................................. 80 6.6 Hydrogen sensing performances ...................................................... 80 6.7 Hydrogen adsorption mechanism analyses ..................................... 80 6.8 Applications of GaN based hydrogen sensors ................................. 81 IV LISTS OF TABLES Table 1.1 Comparisons of various gas sensor types. ................................................ 94 Table 1.2 Comparisons of different material properties. .......................................... 95 Table 2.1 Dry etching condition of GaN. .................................................................. 96 Table 2.2 Growth conditions of the (a) SiO2 and (b) SiNx insulator layers. ............. 97 Table 3.3.1 The pressure-dependent rate constant ( d k ) and the pressure-independent rate constant ( i k ) values for the hydrogen adsorption process as a function of temperature measured in different-concentration hydrogen gases in air and N2 atmospheres............................................................... 98 Table 4.1.1 The increased current magnitude of the studied Pt/GaN (MS) and Pt/SiO2/GaN (MIS) Schottky diodes measured under the atmospheric pressure and when exposed to a 9970 ppm H2/air gas at 300 and 850 K. The applied forward and reverse voltages are fixed at VF = 0.5 V and VR = -2 V, respectively. .................................................................................. 99 Table 4.1.2 The pressure-dependent rate constant ( d k ) and pressure-independent rate constant ( i k ) values of the studied Pt/GaN (MS) and Pt/SiO2/GaN (MIS) Schottky diodes for the hydrogen adsorption process as a function of temperature measured under different-concentration hydrogen gases in an air atmosphere. ....................................................................................... 100 Table 4.2.1 The increased current magnitude of the studied Pt/SiNx/GaN (MIS) Schottky diode measured under the atmospheric pressure and when exposed to 9970 ppm H2/air and 10300 ppm H2/N2 gases at 300 and 850 K. The applied forward and reverse voltages are fixed at VF = 0.5 V and VR = -2 V, respectively. .......................................................................... 101 Table 5.1.1 Comparisons of current-voltage characteristics for the studied Pd and Pt/GaN MS devices and other previously reported hydrogen sensors. .. 102 Table 5.1.2 Comparisons of current-voltage characteristics for the studied Pt/SiO2 and SiNx/GaN MIS devices and other previously reported hydrogen sensors. ................................................................................................................ 107 Table 5.2.1 Comparisons of current-time transient responses for the studied Pd and Pt/GaN MIS devices and other previously reported hydrogen sensors. 110 Table 5.2.2 Comparisons of current-time transient responses for the studied Pt/SiO2 and SiNx/GaN MIS devices and other previously reported hydrogen sensors. ................................................................................................... 115 Table 5.3.1 Comparisons of enthalpy ( ΔH° ) of hydrogen adsorption on the studied devices.................................................................................................... 119 V Table 5.3.2 Comparisons of activation energies for various studied devices. ........... 120 VI LIST OF FIGURES Figure 1.1 Schematic diagrams of catalytic bead gas sensors. .................................. 121 Figure 1.2 Schematic diagrams of electrochemical gas sensors. ............................... 122 Figure 1.3 Schematic diagrams of infrared gas sensors. ............................................ 123 Figure 1.4 Schematic diagrams of solid state (semiconductor) gas sensors. ............. 124 Figure 1.5 Schematic diagrams of field effect transistor gas sensors. ....................... 125 Figure 2.1 The schematic (a) device structure Ⅰ and (b) device structure Ⅱ. ...... 126 Figure 2.2 The procedures for device fabrication of the metal/semiconductor (MS) Schottky diode. ........................................................................................ 128 Figure 2.3 The procedures for device fabrication of the metal/insulator/semiconductor (MIS) Schottky diode. .............................................................................. 130 Figure 2.4 The schematic setup of hydrogen detection system. ................................ 131 Figure 3.1.1 A schematic diagram of the cross-section and top view of structure for the studied Pd/GaN Schottky diode. ........................................................ 132 Figure 3.1.2 AES depth profiles of the Pd/GaN Schottky diode. .............................. 133 Figure 3.1.3 The logarithmic current-voltage (I-V) characteristics of the proposed device at (a) 300 K and (b) 570 K respectively measured under the atmospheric condition in air and exposed to different hydrogen concentrations of 14, 50, 191, 980, and 9970 ppm H2 in air. ................... 134 Figure 3.1.4 A schematic diagram of hydrogen adsorption process. (a) The appearance of the polarization layer, formed by hydrogen atoms trapped at the catalytic metal and semiconductor interface. (b) The corresponding schematic energy band diagram for the Pd/GaN Schottky diode in air and upon exposing to hydrogen gases. ........................................................... 135 Figure 3.1.5 The relationship between the hydrogen detection sensitivity ratio and hydrogen concentration at different temperatures for the Pd/GaN Schottky diode. The applied forward bias was 0.5 V. ............................................. 136 Figure 3.1.6 The Schottky barrier height as a function of temperature with different hydrogen concentrations for the Pd/GaN Schottky diode. ....................... 137 Figure 3.1.7 The corresponding Schottky barrier height change ratio ( bφ Δ / b φ ) as a function of hydrogen concentration at 300 to 570 K. The inset shows the ideality factor (η ) as a function of hydrogen concentration at different temperatures. ............................................................................................ 138 Figure 3.1.8 1 / ln( / ) og o I I as a function of 1/ 2 2 ? H P of the the Pd/GaN Schottky diode at VII different temperatures. The inset shows /(1 ) i i θ ?θ as a function of 1/ 2 H2 P under atmospheric conditions at 300, 320, and 340 K, respectively. ....... 139 Figure 3.1.9 The logarithmic equilibrium constant ( e K ) as a function of the reciprocal temperature. ............................................................................................. 140 Figure 3.1.10 The transient responses for different hydrogen concentration of 494, 980, 5040, and 9970 ppm H2 in air gases under the forward bias of 0.35 V at 450 K. The inset shows the corresponding hydrogen adsorption time constant ( a τ ) and initial rate of change in current (ΔI / Δt ). .................. 141 Figure 3.2.1 Schematic cross sections of (a) Pd/GaN and (b) Pd/Al0.3Ga0.7As Schottky diodes. ...................................................................................................... 142 Figure 3.2.2 AES depth profiles of (a) Pd/GaN and (b) Pd/Al0.3Ga0.7As Schottky diodes. ...................................................................................................... 143 Figure 3.2.3 Current-voltage (I-V) characteristics under different hydrogen concentrations of (a) Pd/GaN and (b) Pd/Al0.3Ga0.7As Schottky diodes at 300 K. ....................................................................................................... 144 Figure 3.2.4 Current-voltage (I-V) characteristics under different hydrogen concentrations of (a) Pd/GaN and (b) Pd/Al0.3Ga0.7As Schottky diodes at 450 K. ....................................................................................................... 145 Figure 3.2.5 A schematic diagram of hydrogen adsorption process. (a) Formation of a polarization layer, formed by hydrogen atoms trapped at the catalytic metal and semiconductor interface. (b) The corresponding schematic energy band diagram for the Pd/GaN (AlGaAs) Schottky diode in air and upon exposing to hydrogen gases. .................................................................... 146 Figure 3.2.6 Schottky barrier height as a function of hydrogen concentration in air at 300 K for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes......................... 147 Figure 3.2.7 The specific Schottky barrier height variation ( b Δφ / H2 C ) (meV/ppm H2) (%) as a function of hydrogen concentration at different temperatures for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes. ........................................ 148 Figure 3.2.8 1 / ln( / ) og o I I as a function of 1/ 2 2 ? H P of (a) Pd/GaN and (b) Pd/Al0.3Ga0.7As Schottky diodes at 300, 320, and 340 K, respectively. .. 149 Figure 3.2.9 Logarithmic equilibrium constant ( e K ) as a function of the reciprocal temperature. The inset shows the enthalpy of hydrogen adsorption ( ΔH° ) of Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes. .................................... 150 Figure 3.2.10 Response curves of a Pd/GaN Schottky diode under the introduction and removal of a hydrogen gas of 9970 ppm H2 in air at different VIII temperatures. The applied forward voltage was 0.35 V. .......................... 151 Figure 3.2.11 Response curves of a Pd/Al0.3Ga0.7As Schottky diode under the introduction and removal of a hydrogen gas of 9090 ppm H2 in air at different temperatures. The applied forward voltage was 0.35 V. ........... 152 Figure 3.2.12 Hydrogen detection adsorption time constant ( a τ ) as a function of temperature for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes exposed to 9970 and 9090 ppm H2/air gases, respectively. Corresponding performance of desorption time constant ( b τ ) is shown in the inset. ........................... 153 Figure 3.3.1 Schematic diagram of the cross-section and top view of structure for the studied Pd/GaN Schottky diode. .............................................................. 154 Figure 3.3.2 The current-voltage (I-V) characteristics of the studied Pd/GaN Schottky diode measured under the atmospheric condition and exposed to different-concentration hydrogen gases balanced with air and N2 at 340 and 570 K. ................................................................................................ 155 Figure 3.3.3 Schematic diagram of hydrogen adsorption process. (a) The appearance of the polarization layer, formed by hydrogen atoms trapped at the catalytic metal and semiconductor interface. The corresponding schematic energy band diagrams for the studied Pd/GaN Schottky diode upon exposing to hydrogen gases in (b) air and (c) N2 atmospheres. ............... 156 Figure 3.3.4 The relationship between the forward hydrogen sensitivity ratio and hydrogen concentration at 340, 450, and 570 K in (a) air and (b) N2 atmospheres. The applied forward voltage is fixed at VF = 0.5 V. ........... 157 Figure 3.3.5 The relationship between the reverse hydrogen sensitivity ratio and hydrogen concentration at 340, 450, and 570 K in (a) air and (b) N2 atmospheres. The applied reverse voltage is fixed at VR = -2 V. ............. 158 Figure 3.3.6 The specific Schottky barrier height variation ( bφ Δ / H2 C ) (meV/ppm H2) as a function of hydrogen concentration at 300 K. H2 C is the introduced hydrogen concentration balanced with air or N2...................................... 159 Figure 3.3.7 1 / ln( / ) og o I I as a function of 1/ 2 2 ? H P for the studied Pd/GaN Schottky diode caused by H2 in air and N2 atmospheres at 300, 320, and 340 K. .. 160 Figure 3.3.8 Logarithmic equilibrium constant ( c K ) as a function of the reciprocal temperature. The inset shows the enthalpy of hydrogen adsorption ( ΔH° ) of the studied Pd/GaN Schottky diode in air and N2 atmospheres. ......... 161 Figure 3.3.9 The transient response curves of the studied Pd/GaN Schottky diode under the introduction and removal of different-concentration hydrogen IX gases of 494, 980, and 9970 ppm H2 in air atmosphere under the forward bias of 0.35 V at 340, 390, and 450 K. .................................................... 162 Figure 3.3.10 The transient response curves of the studied Pd/GaN Schottky diode under the introduction and removal of different-concentration hydrogen gases of 97, 980, and 10300 ppm H2 in a N2 atmosphere under the forward bias of 0.35 V at 340, 390, and 450 K. .................................................... 163 Figure 3.3.11 The linear relationship between ln[1 ln( / ) / ln( / )] , I I I I g g eq ? and measuring time t for the studied Pd/GaN Schottky diode with the introduced different-concentration hydrogen gases balanced with (a) air and (b) N2 at 340, 390, and 450 K. .......................................................... 164 Figure 3.3.12 Logarithmic equilibrium constant ( i k ) as a function of the reciprocal temperature in air and N2 atmospheres. The inset shows the change of the activation energy ( a E ) of the studied Pd/GaN Schottky diode in air and N2 atmospheres.............................................................................................. 165 Figure 3.3.13 The hydrogen detection adsorption time constant ( a τ ) and the initial rate of change in current (ΔI / Δt ) (μAs-1) upon the switching actions as a function of temperature measured in a 980 ppm H2 gas in air and N2 atmospheres.............................................................................................. 166 Figure 4.1.1 Schematic cross sections of the studied (a) Pt/GaN (MS) and (b) Pt/SiO2/GaN (MIS) Schottky diodes. ...................................................... 167 Figure 4.1.2 AES depth profiles of the studied (a) Pt/GaN (MS) and (b) Pt/SiO2/GaN (MIS) Schottky diodes. ............................................................................ 168 Figure 4.1.3 The current-voltage (I-V) characteristics of the studied Pt/GaN (MS) and Pt/SiO2/GaN (MIS) Schottky diodes measured under the atmospheric condition and exposed to different-concentration hydrogen gases balanced with air at 300 and 850 K. ........................................................................ 169 Figure 4.1.4 The schematic energy band diagrams for the studied (a) Pt/GaN (MS) and (b) Pt/SiO2/GaN (MIS) Schottky diodes upon exposing to hydrogen gases in an air atmosphere. ...................................................................... 170 Figure 4.1.5 The relationship between the (a) forward and (b) reverse hydrogen sensitivity ratio as a function of hydrogen concentration for the studied Pt/GaN (MS) and Pt/SiO2/GaN (MIS) Schottky diodes at 300 and 850 K. The applied forward and reverse voltages are fixed at VF = 0.5 V and VR = -2 V, respectively. ..................................................................................... 171 Figure 4.1.6 The Schottky barrier height variation ( b Δφ ) of the studied Pt/GaN (MS) and Pt/SiO2/GaN (MIS) Schottky diodes as a function of hydrogen concentration at 300 and 850 K in an air atmosphere. ............................. 172 X Figure 4.1.7 The reciprocal logarithmic current variation magnitude 1 / ln( / ) og o I I as a function of the reciprocal hydrogen pressure radical 1/ 2 2 ? H P for the studied Pt/GaN (MS) and Pt/SiO2/GaN (MIS) Schottky diodes caused by hydrogen in an air atmosphere at 500, 550, and 600 K. .......................... 173 Figure 4.1.8 Logarithmic equilibrium constant ( e K ) of the studied Pt/GaN (MS) and Pt/SiO2/GaN (MIS) Schottky diodes as a function of the reciprocal temperature. The inset shows the enthalpy of hydrogen adsorption ( ΔH° ) of both studied devices in an air atmosphere. .......................................... 174 Figure 4.1.9 The transient response curves of the studied Pt/GaN (MS) Schottky diode under the introduction and removal of 98, 980, and 9970 ppm H2 in air gases at 400, 500, and 600 K. The forward bias is kept of 0.35 V. .......... 175 Figure 4.1.10 The transient response curves of the studied Pt/SiO2/GaN (MIS) Schottky diode under the introduction and removal of 98, 980, and 9970 ppm H2 in air gases at 400, 500, and 600 K. The forward bias is kept of 1 V. .................................................................................................................. 176 Figure 4.1.11 The corresponding relationship between ln[1 ln( / ) / ln( / )] , I I I I g g eq ? and measuring time t for the studied (a) Pt/GaN (MS) and (b) Pt/SiO2/GaN (MIS) Schottky diodes with the introduced different-concentration hydrogen gases balanced with air at 400, 500, and 600 K. ....................................................................................................... 177 Figure 4.1.12 Logarithmic equilibrium constant ( i k ) of the studied (a) Pt/GaN (MS) and (b) Pt/SiO2/GaN (MIS) Schottky diodes as a function of the reciprocal temperature in an air atmosphere. The inset shows the change of the activation energy ( a E ) of both studied devices in an air atmosphere. .... 178 Figure 4.1.13 The transient response curves of the studied Pt/GaN (MS) Schottky diode under the introduction and removal of a 9970 ppm H2/air gas measured at various temperatures. The applied forward bias of the studied MS device is kept at 0.35 V. ..................................................................... 179 Figure 4.1.14 The transient response curves of the studied Pt/SiO2/GaN (MIS) Schottky diode under the introduction and removal of a 9970 ppm H2/air gas measured at various temperatures. The applied forward bias of the studied MIS device is kept at 1 V. ............................................................ 180 Figure 4.1.15 The hydrogen detection adsorption time constant ( a τ ) and hydrogen detection desorption time constant ( b τ ) of the studied Pt/GaN (MS) and Pt/SiO2/GaN (MIS) Schottky diodes upon the switching actions as a XI function of temperature measured in a 9970 ppm H2 gas in an air atmosphere. .............................................................................................. 181 Figure 4.2.1 Schematic cross section of the studied Pt/SiNx/GaN (MIS) Schottky diode......................................................................................................... 182 Figure 4.2.2 AES depth profiles of the studied Pt/SiNx/GaN (MIS) Schottky diode. 183 Figure 4.2.3 The current-voltage (I-V) characteristics of the studied Pt/SiNx/GaN (MIS) Schottky diode measured under the atmospheric pressure and when exposed to different-concentration hydrogen gases balanced with air and N2 at (a) 300 and (b) 850 K. ..................................................................... 184 Figure 4.2.4 Schematic diagram of hydrogen adsorption process. (a) The appearance of the polarization layer, formed by hydrogen atoms trapped at the catalytic metal and insulator interface. Schematic diagrams of space charge distribution resulted in electric field (b) under the absence of hydrogen and (c) under the presence of hydrogen. ......................................................... 186 Figure 4.2.5 The corresponding schematic energy band diagrams for the studied Pt/SiNx/GaN (MIS) Schottky diode upon exposing to hydrogen gases in (b) air and (c) N2 atmospheres. ...................................................................... 187 Figure 4.2.6 The forward and reverse hydrogen sensitivity ratio as a function of hydrogen concentration for the studied Pt/SiNx/GaN (MIS) Schottky diode at 300 and 850 K. The applied forward and reverse voltages are fixed at VF = 0.5 V and VR = -2 V, respectively. ........................................................ 188 Figure 4.2.7 The Schottky barrier height variation ( bφ Δ ) of the studied Pt/SiNx/GaN (MIS) Schottky diode as a function of hydrogen concentration at 300 and 850 K both in air and N2 atmospheres. .................................................... 189 Figure 4.2.8 The reciprocal logarithmic current variation magnitude (1 / ln( / ) og o I I ) as a function of the reciprocal square root of hydrogen pressure ( 1/ 2 2 ? H P ) for the studied Pt/SiNx/GaN (MIS) Schottky diode induced by H2 in (a) air and (b) N2 atmospheres at 500, 550, and 600 K. ......................................... 190 Figure 4.2.9 Logarithmic equilibrium constant ( e K ) of the studied Pt/SiNx/GaN (MIS) Schottky diode as a function of the reciprocal temperature. The inset shows the enthalpy of hydrogen adsorption ( ΔH° ) of the studied device in air and N2 atmospheres. ........................................................................... 191 Figure 4.2.10 The transient response curves of the studied Pt/SiNx/GaN (MIS) Schottky diode under the introduction and removal of a 9970 ppm H2/air gas measured at different temperatures in an air atmosphere. The forward bias is kept at VF = 1 V. ............................................................................ 192 XII Figure 4.2.11 The hydrogen detection adsorption time constant ( a τ ) (or the hydrogen detection desorption time constant ( b τ ) and corresponding initial rates in current variation (ΔI / Δt ) of the studied Pt/SiNx/GaN (MIS) Schottky diode upon the switching actions as a function of temperature measured in a 9970 ppm H2 gas in an air atmosphere. The applied forward voltage is kept at VF = 1 V. ....................................................................................... 193 Figure 4.2.12 The transient response curves of the studied Pt/SiNx/GaN (MIS) Schottky diode under the introduction of a 10300 ppm H2/N2 gas and removal in N2 and air atmospheres measured at different temperatures. The forward bias is kept at VF = 1 V. .............................................................. 194

    References
    [1] R. C. Weast, “Handbook of chemistry and physics,” Cleveland: CRC press, p.
    F-35, 1976.
    [2] W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” Weinheim: VCH press, vol. 1,
    ch. 10, 1991.
    [3] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid
    state gas sensor devices,” New York: John Wily & Sons, ch. 3, 1993.
    [4] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu,
    and W. C. Liu, “Pd-Oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor
    (HEMT)-based hydrogen sensor,” IEEE Sensors J. vol. 6, pp. 287–292, 2006.
    [5] K. I. Lundstrom, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive
    Pd-gate MOS transistor,” J. Appl. Phys., vol. 46, pp.3876-3881, 1975.
    [6] D. Briand, H. Sundrgen, B. van der Schoot, I. Lundstrom, and N. F. de. Rooij,
    “Thermally isolated MOSFET for gas sensing application,” IEEE Electron
    Device Lett., vol. 22, pp. 11-13, 2001.
    [7] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hung, R. C. Liu,
    and W. C. Liu, “Pd-Oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor
    (HEMT)-based hydrogen sensor,” IEEE Sensors J. vol. 6, pp. 287–292, 2006.
    [8] G. W. Hunter, P. G. Neudeck, L. Y. Chen, D. Knight, C. C. Liu, and Q. H. Wu,
    “Microfabricated chemical sensors for safety and emission control applications,”
    in Proc. 17th Digital Avionics Systems Conf., vol. 1, pp. D11/1-D11/8, 1998.
    [9] A. Arbab, A. Spetz, and I. Lundstrom “Gas sensors for high-temperature
    operation-based on metal-oxide-silicon-carbide (MOSiC) devices,” Sens.
    Actuators B. Chem., vol. 15-16, pp. 19-23, 1993.
    [10] C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang,
    “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high
    83
    temperature,” J. Electron. Mater. vol. 28, pp. 202-205, 1999.
    [11] K. Dobos, M. Armgerth, G. Zimmer, I. Lundstrom, “The influence of different
    insulators on palladium-gate metal-insulator-semiconductor hydrogen sensors,”
    IEEE Trans. Electron Devices, vol. 31, pp. 508-510, 1984.
    [12] M. Armgarth and C. Nylander, “A stable hydrogen-sensitive Pd gate metal-oxide
    semiconductor capacitor,” Appl. Phys. Lett., vol. 39, pp. 91-92, 1981.
    [13] M. Armgarth, D. Soderberg, and I. Lundstrom, “Palladium and platinum gate
    metal-oxide-semiconductor capacitors in hydrogen and oxygen mixtures,” Appl.
    Phys. Lett., vol. 41, pp. 654-655, 1982.
    [14] M. Armgarth and C. Nylander, “Blister formation in Pd gate MIS hydrogen
    sensors,” IEEE Electron Device Lett., vol. 3, pp. 384-386, 1982.
    [15] C. Nylander, M. Armgarth, and C. Svensson, “Hydrogen induced drift in
    palladium gate metal-oxide-semiconductor substrates,” J. Appl. Phys., vol. 56,
    pp. 1177-1188, 1984.
    [16] T. L. Poteat, B. Lalevi? , B. Kuliyev, M. Yousuf, and M. Chen, “MOS and
    Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mater.,
    vol. 12, pp. 181-214, 1983.
    [17] T. L. Poteat and B. Lalevi?, “Pd-MOS hydrogen and hydrocarbon sensor
    device,” IEEE Electron Device Lett., vol. 2, pp. 82-84, 1981.
    [18] T. L. Poteat and B. Lalevi?, “Transition metal-gate MOS gaseous detectors,”
    IEEE Trans. Electron Devices, vol. 29, pp. 123-129, 1982.
    [19] U. Ackelid, M. Armgarth, A. Spetz, and I. Lundstrom, “Ethanol sensitivity of
    palladium-gate metal-oxide-semiconductor structures,” IEEE Electron Device
    Lett., vol. 7, pp. 353-355, 1986.
    [20] I. Lundstrom, A. Spetz, F. Winquist, U. Ackelid, and H. Sundgren, “Catalytic
    metals and field-effect devices - a useful combination,”Sens. Actuator B-Chem.,
    84
    vol. 1, pp. 15-20, 1990.
    [21] F. Winquist, A. Spetz, M. Armgarth, M. Armgarth, and B. Danielsson,
    “Biosensors based on ammonia sensitive metal-oxide-semiconductor structures,”
    Sens. Actuator B-Chem., vol. 8, pp. 91-100, 1985.
    [22] I. Lundstrom, M. Armgarth, A. Spetz, and F. Winquist, “Gas sensors based on
    catalytic metal-gate field-effect devices,” Sens. Actuator B-Chem., vol. 10, pp.
    399-421, 1986.
    [23] A. Ortiz, S. Lopez, J. C. Alonso, and S. Muhl, “Hydrogen-sensitive
    Ni-SiO2a-Si-H Schottky diodes,” Thin Solid Films, vol. 207, pp. 279-282, 1992.
    [24] H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. V.
    McFarland, “Ultrathin Cu films on Si(111): Schottky barrier formation
    andsensor applications,” J. Vac. Sci. Technol. A, vol. 17, pp. 1683-1687, 1999.
    [25] H. Nienhaus, H. S. Bergh, B. Gergen, and A. Majumdar, W. H. Weinberg, and E.
    V. McFarland, “Selective H atom sensors using ultrathin Ag-Si Schottkydiodes”
    Appl. Phys. Lett., vol. 74, pp. 4046-4048, 1999.
    [26] J. Liu, G. R. Oritz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of
    hydrogenon the barrier height of a titanium Schottky didoe on p-type silicon,”
    Phys. Rev. B, vol. 44, pp. 8918-8922, 1991.
    [27] S. X. Jin, L. pp. Wang, M. H. Yuan, J. J. Chen, Y. Q. Jia, and G. G. Jia, “Effects
    of hydrogen on the Schottky-barrier of Ti/n-GaAs diodes,” J. Appl. Phys., vol.
    71, pp. 536-538, 1992.
    [28] Y. Q. Jia and G. G. Qin, “Effects of hydrogen on Al/p-Si Schottky diodes,” Appl.
    Phys. Lett., vol. 56, pp. 641-643, 1990.
    [29] L. M. Lechuga, A. Calle, D. Golmayo, pp. Tejedor, and F. Briones, “A new
    hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., vol.
    138, pp. 159-162, 1991.
    85
    [30] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Hydrogen sensor based
    on a Pt/GaAs Schottky diode,” Sens. Actuator B-Chem., vol. 4, pp. 551-558,
    1991.
    [31] N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, “A study on a
    palladium-titanium oxide Schottky diode as a detector for gaseous components,”
    Surf. Sci., vol. 92, pp. 400-406, 1980.
    [32] H. Kobayashi, K. Kishimoto, and Y. Nakato, “Reactions of hydrogen at the
    interface of palladium-titanium dioxide Schottky diodes as hydrogen sensors,
    studied by work function and electrical characteristic measurements,” Surf. Sci.,
    vol. 306, pp. 393-405, 1994.
    [33] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic
    metals (Pt, Pd and Ir) for GaAs Schottky-barrier sensors,” Sens. Actuator
    B-Chem., vol. 7, pp. 614-618, 1992.
    [34] S. Roy, C. Jacob, C. Lang, and S. Basu, “Studies on Ru/3C-SiC Schottky
    junctions for high temperature hydrogen sensors,” J. Electrochem. Soc., vol. 150,
    pp. H135-H139, 2003.
    [35] D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs
    -platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci.
    Technol. B, vol. 1, pp. 602-607, 1983.
    [36] T. Akin, B Ziaie, S. A. Nikles, and K. Najafi, “A modular micromachined
    high-density connector system for biomedical applications,” IEEE Trans. Biomed.
    Eng., vol. 46, pp. 471-480, Apr. 1999.
    [37] A. Dittmar and K. Najafi, “Special topic section on microtechniques,
    microsensors, microactuators, and microsystems,” IEEE Trans. Biomed. Eng.,
    vol. 47, pp. 1-2, Jan. 2000.
    [38] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling
    86
    of hydrogen adsorption/absorption in thin films on hydrogen-sensitive
    field-effect devices: Observation of large hydrogen-induced dipoles at the
    Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, July 1995.
    [39] M. Lofdahl, M. Eriksson, M. Johansson, and I. Lundstrom, “Difference in
    hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol.
    91, pp. 4275-4280, April 2002.
    [40] D. Briand, H. Sundgren, B. van der Schoot, I. Lundstrom, and N. F. de Rooij,
    “Thermally isolated MOSFET for gas sensing application,” IEEE Electron
    Device Lett., vol. 22, pp. 11–13, Jan. 2002.
    [41] A. E. Abom, R. T. Haasch, N. Hellgren, N. Finnegan, L. Hultman, and M.
    Eriksson, “Characterization of the metal-insulator interface of field-effect
    chemical sensors,” J. Appl. Phys., vol. 93, pp. 9760-9768, June 2003.
    [42] H. Wingbrant, I. Lundstrom, and A. Lloyd Spetz, “The speed of response of
    MISiCFET devices,” Sens. Actuators B. Chem., vol. 93, pp. 286-294, 2003.
    [43] K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. C. Chen, and W. C.
    Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode
    hydrogen sensor,” Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
    [44] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W.
    C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE
    Sensors J., vol. 4, pp. 72–79, Feb. 2004.
    [45] L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new
    hydrogen sensor based on a Pt/GaAs schottky diode,” Sens. Actuators B. Chem.,
    vol. 4, pp. 515-518, 1991.
    [46] Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee, “Trench Pd/Si
    metal-oxide-semiconductor Schottky barrier diode for a high sensitivity
    hydrogen gas sensor,” Appl. Phys. Lett., vol. 57, pp. 2686-2688, 1990.
    87
    [47] W. P. Kang and Y. Gurbuz, “Comparison and analysis of Pd- and Pt-GaAs
    Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181,
    1994.
    [48] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A
    new Pd-Oxide-Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett.,
    vol. 24, pp. 390-392, June 2003.
    [49] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C.
    Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of
    Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, vol. 50, pp.
    2532–2539, Dece. 2003.
    [50] I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, “A
    hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol. 26, pp.
    55-57, 1975.
    [51] D. Dwivedi, R. Dwivedi, and S. K. Srivastava, “Sensing properties of
    palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon
    dioxide,” Sens. Actuators B. Chem., vol. 71, pp. 161-168, 2000.
    [52] J. W. Hammond and C. C. Liu, “Silicon based microfabricated tin oxide gas
    sensor incorporating use of Hall effect measurement,” Sens. Actuators B. Chem.,
    vol. 81 pp. 25-31, 2001.
    [53] B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky
    diode gas sensors on n-type GaN,” Sens. Actuators B. Chem., vol. 56, pp.
    164-168, 1999.
    [54] A. Arbab, A. Spetz, and I. Lunstrom, “Gas sensors for high-temperature
    operation-based on metal-oxide-silicon-carbide (MOSiC) devices,” Sens.
    Actuators B. Chem., vol. 15-16, pp. 19-23, 1993.
    [55] A. Baranzahi, A. L. Spetz, B. Andersson, and I. Lundstrom, “Gas sensitive field
    88
    effect devices for high temperature,” Sens. Actuators B, Chem., vol. 26, pp.
    165–169, 1995.
    [56] C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang,
    “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high
    temperature,” J. Electron. Mat. vol. 28, pp. 202-205, 1999.
    [57] A. Lloyd Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. G. Ekedahl, and I.
    Lundstrom, “High temperature catalytic metal field effect transistors for
    industrial applications,” Sens. Actuators B, Chem., vol. 70, pp. 67–76, 2000.
    [58] C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I. Cho, C. Hong,
    and G. E. Jang, “Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at
    high temperature,” Sens. Actuators B, Chem., vol. 77, pp. 455–462, 2001.
    [59] A. Trinchi, K. Galatsis, W. Wlodarski, and Y. X. Li, “A Pt/Ga2O3-ZnO/SiC
    Schottky diode-based hydrocarbon gas sensor,” IEEE Sensors J., vol. 3, pp.
    548–553, 2003.
    [60] J. Li, W. R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal
    ultraviolet photodetectors on GaN with submicro finger width,” IEEE Photonics
    Technol. Lett., vol. 15, pp. 1141-1143, August 2003.
    [61] M. Mosca, J. L. Reverchon, N. Grandjean, and J. Y. Duboz, “Multilayer
    (Al,Ga)N structures for solar-blind detection, ” IEEE J. Sel. Top. Quantum
    Electron., vol. 10, pp. 752-758, 2004.
    [62] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T.
    Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on
    semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20,
    pp. 161-163, 1999.
    [63] R. Gaska, Q. Chen, J. Yang, A. Qsinsky, M. Asif Khan, and M. S. Shur,
    “High-temperature performance of AlGaN/GaN HFET’s on SiC substrates,”
    89
    IEEE Electron Device Lett., vol. 18, pp. 492-494, 1997.
    [64] J. Schalwig, G. Muller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L.
    Gorgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky
    diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
    [65] J. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Reversible barrier
    height changes in hydrogen-sensitive Pd/GaN and Pt/GaN diodes,” Appl. Phys.
    Lett., vol. 82, pp. 739-741, 2003.
    [66] J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren,
    “Hydrogen-sensitive GaN Schottky diodes,” Solid-State Electron., vol. 47, pp.
    1069-1073, 2003.
    [67] I. Lundstrom and L. G. Petersson, “Chemical sensors with catalytic metal gates,”
    J. Vac. Sci. Technol A., vol. 14, pp. 1539-1545, 1996.
    [68] F. A. Lewis, The Palladium Hydrogen System, New York: Academic, 1967.
    [69] M. Z. Atashbar, D. Banerji, and S. Singamaneni, “Room-temperature hydrogen
    sensor based on palladium nanowires,” IEEE Sensors J., vol. 5, pp. 792–797,
    2005.
    [70] M. Johansson, I. Lundstrom, and L. G. Ekedahl, “Bridging the pressure gap for
    palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing
    environments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998.
    [71] S. M. Sze, Physics of Semiconductor Devices, second ed., Wiley, New York,
    1981 (Chapter 2).
    [72] M. W. Cole, D. W. Eckart W. Y. Han, R. L. Pfeffer, T. Monahan, F. Ren, C. Yuan,
    R. A. Stall, S. J. Pearton, Y. Li, and Y. Lu, “Thermal stability of W ohmic
    contacts to n-type GaN,” J. Appl. Phys., vol. 80, pp. 278-281, 1996.
    [73] M. Eriksson and L. G. Ekedahl, “Hydrogen adsorption states at the Pd/SiO2
    interface and simulation of the response of a Pd metal-oxide-semiconductor
    90
    hydrogen sensor,” J. Appl. Phys., vol. 83, pp. 3947-3951, 1998.
    [74] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu,
    “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode
    hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, Sept.
    2001.
    [75] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas
    detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
    [76] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative
    hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor
    Schottky diodes,” Jpn. J. Appl. Phys., vol. 40, pp. 6254–6289, 2001.
    [77] R. J. Silbey and R. A. Alberty, Physical Chemistry, third ed., Wiley, New York,
    2001.
    [78] M. Eriksson, I. Lundstrom, and L. G. Ekedahl, “A model of the Temkin isotherm
    behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., vol. 82,
    pp. 3143-3146, Sept. 1997.
    [79] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu,
    “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky
    diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
    [80] B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton,
    “Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection,”
    Sens. Actuators B, vol. 104, pp. 232-236, 2005.
    [81] W. Liu, “Handbook of III-V Heterojunction Bipolar Transistors,” Wiley, New
    York, 1998.
    [82] A. Voskoboynikov, S. H. Liu, and C. P. Lee, “Spin-dependent delay time in
    electronic resonant tunneling at zero magnetic field,” Solid State Commun., vol.
    115, pp. 477-481, 2000.
    91
    [83] J. Li, W.R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal
    ultraviolet photodetectors on GaN with submicro finger width,” IEEE Photonics
    Technol. Lett., vol. 15, pp. 1141-1143, 2003.
    [84] T. Iwanaga, T. Hyodo, Y. Shimizu, and M. Egahira, “H2 sensing properties and
    mechanism of anodically oxidized TiO2 film contacted with Pd electrode,” Sens.
    Actuators B, vol. 93, pp. 519-525, 2003.
    [85] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen
    sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18,
    2002.
    [86] R. C. Weast, “Handbook of Chemistry and Physics,” p. F-35, Cleveland: CRC
    press, 1976.
    [87] B. S. Kang, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton,
    “AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas
    sensor,” Appl. Phys. Lett., vol. 84, pp. 1123-1125, 2004.
    [88] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “Pt-AlGaN/GaN Schottky diodes
    operated at 800°C for hydrogen sensing,” Appl. Phys. Lett., vol. 87, pp. 133501,
    2005.
    [89] M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik,
    and O. Ambacher, “Pt/GaN Schottky diodes for hydrogen gas sensors,” Sens.
    Actuators B, vol. 113, pp. 797-804, 2006.
    [90] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption
    kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,”
    Sens. Actuators B, vol. 92, pp. 6-16, 2003.
    [91] S. Nakagomi, P. Tobias, A. Baranzahi, I. Lundstrom, P. Martensson, and A. L.
    Spetz, “Influence of carbon monoxide, water and oxygen on high temperature
    catalytic metal-oxide-silicon carbide structures,” Sens. Actuators B, vol. 45, pp.
    92
    183-191, 1997.
    [92] L. Y. Chen, G. W. Hunter, P. G. Neudeck, and D. Knight, “Surface and interface
    properties of PdCr/SiC Schottky diode gas sensor annealed at 425°C,”
    Solid-State Electron., vol. 42, pp. 2209-2214, 1998.
    [93] P. Tobias, P. Martensson, A. Goras, I. Lundstrom, and A. L. Spetz, “Moving gas
    outlets for the evaluation of fast gas sensors,” Sens. Actuators B, vol. 58, pp.
    389-393, 1999.
    [94] S. Nakagomi, K. Okuda, and Y. Kokubun, “Electrical properties dependent on H2
    gas for new structure diode of Pt-thin WO3-SiC,” Sens. Actuators B, vol. 96, pp.
    364-371, 2003.
    [95] S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri,
    “Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC
    devices,” Sens. Actuators B, vol. 111-112, pp. 111-116, 2005.
    [96] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C.
    T. Lu, “A new Pt/oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor,”
    IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002.
    [97] J. P. Xu, P. T. Lai, D. G. Zhong, and C. L. Chan, “Improved hydrogen-sensitive
    properties of MISiC Schottky sensor with thin NO-grown oxynitride as gate
    insulator,” IEEE Electron. Device Lett., vol. 24, pp. 13-15, 2003.
    [98] C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu,
    “A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor,” IEEE Electron.
    Device Lett., vol. 27, pp. 951-954, 2006.
    [99] W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” VCH press, Weinheim, vol. 2, ch.
    11, 1991.
    [100] M. Eriksson, A. Salomonsson, I. Lundstrom, D. Briand, and A. E. Abom, “The
    influence of the insulator surface properties on the hydrogen response of
    93
    field-effect gas sensors,” J. Appl. Phys., vol. 98, pp. 034903, 2005.
    [101] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu,
    “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky
    diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003.
    [102] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu,
    “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky
    diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
    [103] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, “High H2 sensing
    performance of anodically oxidized TiO2 film contacted with Pd,” Sens.
    Actuators B, vol.83, pp. 195-201, 2002.
    [104] I. Lundstrom, “Hydrogen sensitive MOS structures. Part 1. Principles and
    applications,” Sens. Actuators B, vol. 1, pp. 403-426, 1981.
    [105] I. Lundstrom, “Hydrogen sensitive MOS structures. Part 2. Characterization,”
    Sens. Actuators B, vol. 2, pp. 105-138, 1981/1982.
    [106] H. Svenningstorp, B. Widen, P. Salomonsson, L. G. Ekedahl, I. Lundstrom, P.
    Tobias, and A. L. Spetz, “Detection of HC in exhaust gases by an array of MISiC
    sensors,” Sens. Actuators B, vol. 77, pp. 177-185, 2001.
    [107] M. Lofdahl, M. Eriksson, M. Johansson, and I. Lundstrom, “Difference in
    hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol.
    91, pp. 4275-4280, 2002.
    [108] L. G. Petersson, H. M. Dannetun, and I. Lundstrom, “The water-forming reaction
    on palladium,” Surf. Sci., vol. 161, pp. 77-100, 1985.

    下載圖示 校內:2010-07-18公開
    校外:2012-07-18公開
    QR CODE