簡易檢索 / 詳目顯示

研究生: 曾世宇
Tseng, Shih-Yu
論文名稱: 以共電鍍方式製備銅鋅錫硫薄膜及其電化學特性之研究
A Study on Electrochemical Characteristics and Co-electrodeposition of Cu2ZnSnS4
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 銅鋅錫硫共電鍍電化學分析
外文關鍵詞: Cu2ZnSnS4, co-electrodeposition, electrochemical study
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用電鍍製程在室溫下製備Cu2ZnSnS4薄膜,並討論Cu-Zn-Sn-S四元電化學系統的基礎特性分析,並藉由共電鍍的方式沉積出接近理想化學組成之Cu2ZnSnS4薄膜。

    本實驗從電化學特性分析開始,在三電極電鍍槽當中,於鉬基板(Mo substrate)上針對含有Cu、Zn、Sn、S等四種離子的溶液,從單元素至四元素的溶液系統進行循環伏安法分析,並輔以XRD薄膜分析來判斷各種離子在溶液當中的反應機制。並比較不同的酸鹼值環境、錯合劑濃度、電鍍液的溫度及單一離子濃度變化對於反應機制的差異,來建立較完整的電化學資料庫

    接著我們以電化學分析中所得到的結論,作為共電鍍Cu-Zn-Sn-S溶液之電鍍條件與環境,並討論製程參數對共電鍍Cu2ZnSnS4之影響,諸如酸鹼值變化及錯合劑濃度對薄膜的影響,以及為了改善薄膜的均勻性,進行電極改善,並討論在電極改善後所造成的影響,之後加入硫化時間參數討論,以取得最佳的組成比例。實驗的結果藉由SEM、EDS、XRD、Raman Spectroscopy等分析方法,幫助我們分析觀察Cu2ZnSnS4薄膜之晶體結構、表面形貌、化學組成等變化。並取得較佳的四元共電鍍條件,結果顯示於電鍍電位-1.6V、電鍍時間600秒、硫化溫度550℃、硫化時間一小時的條件下,可獲得最佳組成Cu/(Zn+Sn)=0.81、Zn/Sn=1.05。

    The specific aim of this thesis is to co-electrodeposit stoichimetric Cu2ZnSnS4 thin films, and the electrochemical study of the Cu-Zn-Sn-S system has also been presented. Cyclic voltammogram was adopted to help clarifying the electrochemical characteristics of acid solution containing Cu2+, Zn2+, Sn4+ and Na2S2O3 on Mo substrate. Electrochemical behaviors from unitary Cu, Zn, Sn and S system to quaternary Cu-Zn-Sn-S system were fully investigated; then XRD was used to identify the as-deposited films. To have better insight into the electrochemical behavior, the cyclic voltammetric studies were also performed on different pH value, complexing agent concentration, temperature and different single ion concentration. Through the analysis of cyclic voltammegram, we determined the potential, pH value, solution temperature and complexing agent concentration for depositing Cu2ZnSnS4 thin films.

    For the co-deposition of homogeneous and stoichiometric Cu2ZnSnS4 thin films, we further changed the electrode form and reduced the sulfurization time. The thin films’ composition and morphology were characterized by EDS and SEM, and the structural properties were characterized by XRD and Raman spectroscopy, respectively. These adjustments are shown to have desirable impact on the film qualities. Finally, through the co-electrodeposition at -1.6V for 10 minutes and sulfurizationin 550℃ for 1hr, we obtained the Cu2ZnSnS4 film with atomic ratio of Cu/(Zn+Sn)=0.81 and Zn/Sn=1.05.

    第1章 緒論 1 1.1. 前言 1 1.2. 太陽能電池介紹 1 1.3. Cu2ZnSnS4薄膜太陽能電池之發展與演進[2] 3 1.4. Cu2ZnSnS4薄膜之主要製程[2] 4 1.5. 電鍍製備Cu2ZnSnS4之製程現況6 1.6. 實驗動機與目的 7 第2章 原理與文獻回顧 9 2.1. 太陽電池工作原理[16] 9 2.2. Cu2ZnSnS4四元化合物之材料特性[53] 14 2.3. 電鍍製程原理 15 2.3-1. 電化學沉積過程[20] 15 2.3-2. 法拉第定律與電流效率 17 2.3-3. 基本電鍍系統的組成 18 2.3-4. 電鍍薄膜的成長機制[24][25] 21 2.4. 影響電鍍製程之因素 23 2.5. 循環伏安法與氧化還原電位 25 2.6. 錯合劑(Complexing agent) 26 2.7. 共電鍍Cu2ZnSnS4薄膜[27][28][30] 27 第3章 實驗方法與步驟 29 3.1. 實驗材料 29 3.2. 實驗設備 29 3.2-1. 恆電位儀及電鍍槽設置 29 3.2-2. 薄膜濺鍍系統(Sputtering System) 31 3.2-3. 定速旋轉平台 32 3.2-4. 硫化爐 33 3.3. 實驗流程 34 3.3-1. Mo基板製作 35 3.3-2. 溶液的配製 35 3.3-3. 電化學分析 36 3.3-4. 共電鍍Cu2ZnSnS4薄膜 36 3.3-5. 電鍍參數調變 37 3.3-6. 硫化處理 37 3.4. 鍍層分析儀器 37 3.4-1. 四點探針(Four point probe) 37 3.4-2. 掃描式電子顯微鏡(Scanning Electron Microscope)[33] 38 3.4-3. 能量分散光譜儀(Energy Dispersive Spectroscopy)[33] 39 3.4-4. X-Ray粉末繞射儀(Powder X-ray Diffraction)[34] 40 3.4-5. 拉曼光譜儀(Raman Spectroscopy)[33] 41 第4章 結果與討論 43 4.1. 電化學討論 43 4.1-1. 循環伏安法 43 4.1-2. 二元系統之循環伏安法分析 43 4.1-3. 三元系統之循環伏安法分析 49 4.1-4. 四元系統之循環伏安法分析 54 4.1-5. 溶液在不同單一離子濃度之循環伏安法分析 56 4.1-6. 溶液在不同pH值之循環伏安法分析 60 4.1-7. 溶液在不同錯合劑濃度之循環伏安法分析 61 4.1-8. 溶液在不同溫度之下之循環伏安法分析 62 4.2. 共電鍍Cu2ZnSnS4薄膜 64 4.2-1. 共電鍍Cu2ZnSnS4薄膜 64 4.2-2. 於不同酸鹼值之下共電鍍Cu2ZnSnS4薄膜 65 4.2-3. 於不同錯合劑濃度之下共電鍍Cu2ZnSnS4薄膜 67 4.2-4. 改善電鍍電極形式 69 4.2-5. 以環狀電極形式共電鍍Cu2ZnSnS4薄膜 73 4.2-6. 共電鍍Cu2ZnSnS4薄膜:硫化時間的改善 75 4.2-7. 共電鍍Cu2ZnSnS4薄膜:組成比例的最佳化 77 第5章 結論與未來方向 82 參考文獻 85

    1. 莊家琛, 太陽能工程-太陽電池篇, p. 7, 全華科技圖書, 2006.
    2. 葉旻彥, 武東星, 銅鋅錫硫(CZTS)太陽能電池發展, p. 2, 工業材料雜誌, 2011.
    3. K. Otte, L. Makhova, A. Braun, I. Konovalov, “Flexible Cu(In,Ga)Se2 thin-film solar cells for space application”, Thin Solid Films, p. 613, 511-512(2006).
    4. G. M. Hanket, U. P. Singh, E. Eser, W. N. Shafarman, R. W. Birkmire, “Pilot-scale manufacture of Cu(InGa)Se2 films on a flexible polymer substrate”, Photovoltaic Specialists Conference. Proceedings of the 29th IEEE, p. 567, 2002.
    5. R. Nitsche, D. F. Sargent, P. Wild, “Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport”, J. Cryst. Growth, p. 52, 1(1967).
    6. K. Ito, T. Nakazawa, “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films”, Jpn. J. Appl. Phys. , p. 2094, 27(1988).
    7. N. Nakayama, K. Ito, “Sprayed films of stannite Cu2ZnSnS4”, Appl. Surf. Sci. , p. 171, 92(1996).
    8. K. Tanaka, N. Moritake, H. Uchiki, “Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors”, Sol. Energy Mater & Sol. Cells, p. 1199, 91(2007).
    9. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi, H. Katagiri, “Cu2ZnSnS4-type thin film solar cells using abundant materials”, Thin Solid Films, p. 5997, 515(2007).
    10. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, “Development of thin film solar cell based on Cu2ZnSnS4 thin films”, Sol. Energy Mater & Sol. Cells, p. 141, 65(2001).
    11. T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, “Fabrication of Cu2ZnSnS4 thin films by co-evaporation”, Phys. Stat. Sol. , p. 2844, (C)3(2006).
    12. K. Moriya, K. Tanaka, H. Uchiki, “Fabrication of Cu2ZnSnS4 Thin-Film Solar Cell Prepared by Pulsed Laser Deposition”, Jpn. J. Appl. Phys. , p. 5780, 46(2007).
    13. J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, I. Forbes, “New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material”, Phys. Stat. Sol. , p. 1772, (B)245(2008).
    14. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell”, Prog. Photovoltaics: Res. Appl. , p. 6, 20(2012).
    15. S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, H. Deligianni, “A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell”, Adv. Energy Mater, p. 253, 2(2012).
    16. 林明獻, 太陽電池入門技術, 2nd ed, 全華圖書股份有限公司, 2008.
    17. S. R. Hall, J. T. Szymanski, J. M. Stewart, “Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals”, Canad. Mineral. , p. 131, 16(1978).
    18. Mincrystinformation card – KESTERITE(Card No. 2333), 2010.
    19. M. Ichimura, Y. Nakashima, “Analysis of Atomic and Electronic Structures of Cu2ZnSnS4 Based on First-Principle Calculation”, Jpn. J. Appl. Phys. , p. 090202, 48(2009).
    20. 胡啟章, 電化學原理與方法, 1st ed, 五南圖書出版, 2002.
    21. M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, 2nd ed, Wiley, New Jersey, 2006.
    22. 賴耿陽, 實用電鍍技術全集, 復漢出版社, 1981.
    23. P. P. Prosini, M. L. Addonizio, A. Antonaia, S. Loreti, “Electrodeposition of copper-indium alloy under diffusion-limiting current control”, Thin Solid Films, p. 90, 288(1996).
    24. M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, Electrochemical Society, 1998.
    25. E. Budevski, W. J. Lorenz, G. Staikov, “Electrochemical Phase Formation and Growth, An Introduction to the Initial Stages of Metal Deposition”, J. Appl. Electrochem. , p. 564, 28(1998).
    26. M. V. Orna, J. Stock, Electrochemistry, past and present. Columbus, American Chemical Society, 1989.
    27. H. Araki, Y. Kubo, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, “Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors”, Phys. Stat. Sol. , p. 1266, (C)6(2009).
    28. X. He, H. Shen, W. Wang, J. Pi, Y. Hao, X. Shi, “Synthesis of Cu2ZnSnS4 films from co-electrodeposited Cu-Zn-Sn precursors and their microstructural and optical properties”, Appl. Surf. Sci. , p. 765, 282(2013).
    29. S. Beyhan, S. Suzer, F. Kadırgan, “Complexing agent effect on the stoichiometric ratio of the electrochemically prepared CuInSe2 thin films”, Sol. Energy Mater & Sol. Cells, p. 1922, 91(2007).
    30. J. Li, T. Ma, M. Wei, W. Liu, G. Jiang, C. Zhu, “The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route”, Appl. Surf. Sci. , p. 6261, 258(2012).
    31. O. Roussel, O. Ramdani, E. Chassaing, P. P. Grand, M. Lamirand, A. Etcheberry, O. Kerrec, J. F. Guillemoles, D. Lincota, “First Stages of CuInSe2 Electrodeposition from Cu(II)-In(III)-Se(IV) Acidic Solutions on Polycrystalline Mo Films”, J. Electrochem. Soc. , p. 141, 155(2008).
    32. D. L. Simth, Chap10. Film Analysis, Thin Film Deposition, McGraw-Hill, New York, USA, 1995.
    33. 汪建民, 材料分析, 1st ed. 中國材料科學學會, 新竹, 1998.
    34. 林麗娟, X光繞射原理及其運用, 工業材料, p. 86, 101(1994).
    35. H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, “Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors”, Sol. Energy Mater & Sol. Cells, p. 996, 93(2009).
    36. B. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H. W. Schock, “Cu2ZnSnS4 thin film solar cells by fast coevaporation”, Prog. Photovoltaics: Res. Appl. , p. 93, 19(2011).
    37. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, “Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors”, Sol. Energy Mater & Sol. Cells, p. 407, 49(1997).
    38. H. Katagiri, “Cu2ZnSnS4 thin film solar cells”, Thin Solid Films, p. 426, 480(2005).
    39. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, T. Motohiro, “Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique”, Appl. Phys. Express, p. 041201, 1(2008).
    40. W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, M. Matsumura, “Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure”, Electrochim. Acta, p. 436, 88(2013).
    41. A. Ennaoui, M. L. Steiner, A. Weber, D. A. Ras, I. Kotschau, H. W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, “Cu2ZnSnS4 thin film solar cells from electroplated precursors:Novel low-cost perspective”, Thin Solid Films, p. 2511, 517(2009).
    42. J. J. Scragg, D. M. Berg, P. J. Dale, “A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers”, J. Electroanal. Chem. , p. 52, 646(2010).
    43. 國家奈米元件實驗室奈米元件, 太陽能真空薄膜濺鍍機(RF Sputter).
    44. 國立成功大學材料所微奈米材料實驗室, 高溫硫化退火爐.
    45. Y. Cui, S. Zuo, J. Jiang, S. Yuan, J. Chu, “Synthesis and characterization of co-electroplated Cu2ZnSnS4 thin films as potential photovoltaic material”, Sol. Energy Mater & Sol. Cells, p. 2136, 95(2011).
    46. B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choi, C. J. Park, S. S. Kolekar, J. H. Kim, “Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films”, Appl. Surf. Sci. , p. 1786, 257(2010).
    47. M. Jeon, T. Shimizu, S. Shingubara, “Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte”, Mater. Lett. , p. 2364, 65(2011).
    48. M. Jeon, Y. Tanaka, T. Shimizu, S. Shingubara, “Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: Effect of complexing agent volume”, Energy Procedia, p. 255, 10(2011).
    49. Y. Wang, J. Ma, P. Liu, Y. Chen, R. Li, J. Gu, J. Lu, S. Yang, X. Gao, “Cu2ZnSnS4 films deposited by a co-electrodeposition-annealing route”, Mater. Lett. , p. 13, 77(2012).
    50. S. M. Pawar, B. S. Pawar, A. V. Moholkar, D. S. Choi, J. H. Yun, J. H. Moon, S. S. Kolekar, J. H. Kim, “Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application”, Electrochim. Acta, p. 4057, 55(2010).
    51. T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D. B. Mitzi, “Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells”, Adv. Energy Mater. , p. 34, 3(2013).
    52. 張佳文, 吳宗鑫, CZTS太陽電池技術與專利戰略剖析(上), 工業材料雜誌319期,2013.
    53. 趙莉敏, 傅耀賢, 水熱法合成Cu2ZnSnS4粉體及其特性探討, 國立臺南大學材料科學系碩士論文, pp. 15-17, 2011.

    無法下載圖示 校內:2018-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE