簡易檢索 / 詳目顯示

研究生: 郭泰億
Kuo, Tai-I
論文名稱: 微型電網模型之建構及功率控制策略
Development of Microgrid Model and Strategy of Power Flow Control
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 微型電網鋰離子電池功率控制
外文關鍵詞: microgrid, Li-ion battery, power flow control
相關次數: 點閱:94下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微型電網為近年來熱門的能源研究領域,其主要架構包含再生能源系統、
    儲能裝置與負載。由於再生能源的來源具有不確定性,容易隨時間變化產生
    不同的輸出功率,致使整體電力品質下降。有鑑於此,再生能源發電系統必須
    搭配儲能設備調節功率,以提高對整體電力系統的穩定度。
    本研究以風力發電機為微型電網之再生能源供應包含鋰離子電池組組成之
    電動車的家庭負載,透過建立各子系統模型,制定適當的控制策略。最後分別
    考慮獨立供電與併聯電網時之狀況,以模擬微型電網內各種運作情況。

    In recent years, microgrid has become a popular topic in the energy sector. The main structure of microgrid usually consists of renewable energy source, storage system and load. Due to the intermittent nature of renewable energy source that may degrade the power quality and reliability, storage system is a good solution to regulate the power flow and stabilize the supply system.
    This research adopts a wind turbine as the renewable energy source to supply household load that includes Li-ion battery based electric-vehicle. Subsystem models are constructed to develop appropriate control strategies for balancing power flow within the microgrid. Finally, various simulation tests on the microgrid in both standalone and grid operation modes are conducted to verify the effectiveness of the proposed control strategy in this study.

    中文摘要I 英文摘要II 誌謝III 目錄IV 表目錄VII 圖目錄VIII 符號說明XII 第一章緒論1 1.1研究背景與動機1 1.2本文貢獻3 1.3本文架構4 第二章再生能源發電系統5 2.1風渦輪模型5 2.2發電機模型9 2.2.1永磁同步發電機模型9 2.2.2永磁同步發電機控制器10 2.3轉換器控制與直流鏈電壓模型14 2.3.1直流鏈電壓模型14 2.3.2電網側逆流器模型15 第三章鋰離子電池儲能設備21 3.1鋰離子電池簡介21 3.2鋰離子電池原理22 3.2.1鋰離子電池化學反應22 3.2.2鋰離子電池特性24 3.3電池模型文獻探討25 3.3.1簡單電池模型25 3.3.2簡單電池改進模型26 3.3.3戴維寧電池模型27 3.3.4動態電池模型27 3.3.5四階電流模型28 3.4適用於微型電網之鋰離子電池模型29 3.4.1鋰離子電池模型之建模29 3.4.2鋰離子電池模型之驗證32 3.4.3鋰離子電池組與直流鏈電壓控制33 第四章控制策略35 4.1整體架構35 4.2功率分配優先權概念35 4.2.1風機系統36 4.2.2交流側發電機組系統36 4.2.3緩衝電池組系統36 4.2.4電動車電池組系統39 4.2.5總體協調控制40 4.3風力發電控制43 4.3.1最大功率追蹤44 4.3.2風機降載機制45 4.4儲能系統控制46 4.5交流側發電機組與電網控制48 4.5.1獨立供電之發電機48 4.5.2市電併聯模型與控制49 第五章案例模擬50 5.1模擬架構說明50 5.2模擬結果51 5.2.1獨立供電下有緩衝電池之情形51 5.2.2獨立供電下無緩衝電池之情形61 5.2.3併聯電網下有緩衝電池之情形69 5.2.4併聯電網下無緩衝電池之情形78 5.2.5獨立供電下之極端情形86 5.3結果比較94 第六章結論與未來研究方向96 6.1結論96 6.2未來研究方向97 參考文獻99

    [1] T. Meng and X. Ai, “The operation of microgrid containing electric vehicles,” in Power and Energy Engineering Conference (APPEEC), 2011 Asia-Pacific, 2011, pp. 1–5.
    [2] 洪穎怡、許炎豐、陳士麟,微電網試驗場之研製. 臺灣電力公司完成報告, 民國一百年.
    [3] R. Lasseter and P. Paigi, “Microgrid: a conceptual solution,” in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol. 6, 2004, pp. 4285–4290 Vol.6.
    [4] X. Yu, Y. Xue, S. Sirouspour, and A. Emadi, “Microgrid and transportation electrification: A review,” in Transportation Electrification Conference and Expo(ITEC), 2012 IEEE, 2012, pp. 1–6.
    [5] Z. Haiyang and L. ShanDe, “Research onmicrogrid,” in Advanced Power System Automation and Protection (APAP), 2011 International Conference on, vol. 1, 2011, pp. 595–598.
    [6] 梁佩芳、何無忌、李東璟、陳翔雄, “我國智慧電網之推動現況,” 礦冶雜誌, vol. 55, pp. 1 – 17, 民國一百年.
    [7] 張永瑞, “核研所分散式發電及微型電網研發現況,” 核能研究所, 民國一百年.
    [8] H. Riegler, “Hawt versus vawt: Small vawts find a clear niche,” Refocus, vol. 4, pp. 44 – 46, 2003.
    [9] A. Betz, Introduction to the theory of flow machines. Pergamon Press, 1966.
    [10] S. Heier, Grid Integration of Wind Energy Conversion Systems. Wiley, 1998.
    [11] D. Peftitsis, G. Adamidis, and A. Fyntanakis, "Modulation of three phase rectifier in connection with PMSG for maximum energy extraction,” in Power Electronics and Applications, 2009. EPE ’09. 13th European Conference on, Sep. 2009, pp. 1 –10.
    [12] A. Uehara, A. Pratap, T. Goya, T. Senjyu, A. Yona, N. Urasaki, and T. Funabashi, “A coordinated control method to smooth wind power fluctuations of a pmsg-based wecs,” IEEE Trans. Energy Conversion, vol. 26, no. 2, pp. 550 –558, Jun. 2011.
    [13] C. Ong, Dynamic Simulation of Electric Machinery: Using Matlab/Simulink. Prentice Hall PTR, 1998.
    [14] A. Yazdani and R. Iravani, “A neutral-point clamped converter system for direct-drive variable-speed wind power unit,” IEEE Trans. Energy Conversion, vol. 21, no. 2, pp. 596–607, Jun. 2006.
    [15] K. Tan and S. Islam, “Optimum control strategies in energy conversion of pmsg wind turbine system without mechanical sensors,” IEEE Trans. Energy Conversion, vol. 19, no. 2, pp. 392–399, 2004.
    [16] A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped pwm inverter,” IEEE Trans. Ind. Applicat., vol. IA-17, no. 5, pp. 518–523, 1981.
    [17] S. Partyka, “Dc link voltage control,” Institute of Energy Technology, Tech. Rep., 2008.
    [18] R. Park, “Two-reaction theory of synchronous machines generalized method of analysis-part i,” American Institute of Electrical Engineers, Transactions, vol. 48, no. 3, pp. 716–727, 1929.
    [19] N. Mohan and T. Undeland, Power electronics: converters, applications, and design. Wiley India Pvt. Limited, 2007.
    [20] 廖偉志, “風能轉換系統應用於市電併聯之實功控制,” 碩士論文, 國立成功大學,民國九十八年六月.
    [21] D. Linden and T. Reddy, Handbook of batteries, ser. McGraw-Hill handbooks. McGraw-Hill, 2002.
    [22] Lithium-ion battery overview. Lighting Africa.
    [23] Overview of lithium ion batteries. Panasonic.
    [24] Lithium ion rechargeable batteries:technical handbook. SONY.
    [25] Lithium ion batteries:technical handbook. Panasonic.
    [26] J. Cao and A. Emadi, “Batteries need electronics,” Industrial Electronics Magazine, IEEE, vol. 5, no. 1, pp. 27 –35, march 2011.
    [27] 洪裕桓, “智慧型鋰電池管理系統之研製,”碩士論文,國立中山大學,民國九十四年六月.
    [28] H. Chan, “A new battery model for use with battery energy storage systems and electric vehicles power systems,” in Power Engineering Society WinterMeeting, 2000. IEEE, vol. 1, 2000, pp. 470 –475 vol.1.
    [29] J. Cun, J. Fiorina, M. Fraisse, and H. Mabboux, “The experience of a ups company in advanced battery monitoring,” in Telecommunications Energy Conference, 1996. INTELEC ’96., 18th International, oct 1996, pp. 646 –653.
    [30] C. P. Giglioli R., “Charge and discharge fourth order dynamic model of the lead battery,” 10th Int’l Electric Vehicle Symposium, Hong Kong, pp. 1 – 9, 1990.
    [31] M. Chen and G. Rincon-Mora, “Accurate electrical batterymodel capable of predicting runtime and I-V performance,” IEEE Trans. Energy Conversion, vol. 21, no. 2, pp. 504 – 511, Jun. 2006.
    [32] R. Kroeze and P. Krein, “Electrical battery model for use in dynamic electric vehicle simulations,” in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, Jun. 2008, pp. 1336 –1342.
    [33] “PL-383562 specifications,” AA Portable Power Corp., CA, US.
    [34] 雷大德, “結合離岸風電與氫能管理系統之電網操作架構,” 碩士論文, 國立成功大學, 民國一零一年六月.
    [35] G. Xu, L. Xu, D.Morrow, and D. Chen, “Coordinated dc voltage control of wind turbine with embedded energy storage system,” IEEE Trans. Energy Conversion, vol. 27, no. 4, pp. 1036–1045, 2012.
    [36] H. Saadat, Power System Analysis. McGraw-Hill, 2009.
    [37] M. A. S.p.A., “Generator type ecp 34-1s/4,”Mecc Alte S.p.A., Tech. Rep., 2011.
    [38] M. A. S.p.A., “Generator type eco 46-2l/4,”Mecc Alte S.p.A., Tech. Rep., 2012.
    [39] 林俊宏, “太陽能 -風力混合發電系統之可用度及成本/效益評估,” 碩士論文,清雲科技大學, 民國九十四年六月.
    [40] L. Gaines and R. Cuenca. Costs of lithium-ion batteries for vehicles. Argonne National Laboratory.

    下載圖示 校內:2015-08-27公開
    校外:2018-08-27公開
    QR CODE