| 研究生: |
林千琪 Lin, Chien-chi |
|---|---|
| 論文名稱: |
摻雜矽之鉍釹鈦鐵電薄膜製備與特性 Fabrication and Characterization of Si-doped Bi3.5Nd0.5Ti3O12 Ferroelectric Thin Films |
| 指導教授: |
洪敏雄
Hon, Min-hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 矽 、鉍釹鈦 、鐵電薄膜 |
| 外文關鍵詞: | Bi3.5Nd0.5Ti4O12, ferroelectric thin film, Si |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
鉍釹鈦(Bi3.5Nd0.5Ti3O12 ,BNT)為一種層狀鈣鈦礦結構之鐵電薄膜,具有優異的鐵電性質,多用於非揮發性記憶體元件。本文主要研究摻雜矽之鉍釹鈦鐵電薄膜製備與特性。利用化學溶液鍍膜法(Chemical solution deposition,CSD)於鎳酸鑭電極基板(LaNiO3/Si)上鍍覆所得到之鐵電薄膜,探討Si摻雜對於薄膜晶體結構、介電特性、漏電流特性以及鐵電性質之影響。
Si摻雜於BNT薄膜可使結晶溫度降低、晶粒細化、表面粗糙度下降。而薄膜之電性易受結晶指向之影響,所以本研究再利用分層結晶(layer-by-layer crystallization)的熱處理方式,於鎳酸鑭電極基板上可製作出具有(117)與(200)優選指向之薄膜。藉由Si摻雜以及分層結晶熱處理製作出的BNT薄膜,漏電流明顯的獲得改善(J<10-8)。於650℃分層結晶熱處理溫度下Si摻雜量為x=0.01時,可得到較佳的鐵電以及介電性質,殘存極化量(2Pr)為6.0(μC/cm2),矯頑電場(Ec)為29.2kV/cm,於頻率1MHz下介電常數為236,而散逸因子0.015。
Abstract
Bi3.5Nd0.5Ti3O12(BNT) thin films of layered perovskite structure, which is currently used as capacitor material in ferroelectric memory. Si-doped BNT ferroelectric thin films was investigated in this research. The thin films were prepared on LaNiO3/Si using chemical solution deposition (CSD) technique. The crystal structure, dielectric, leakage current and ferroelectric properties of Si-doped BNT thin films were examined in this work.
Silicon (Si)-substituted BNT thin films are expected to reduce the processing temperature and show good surface morphology with relatively small grain. The electric properties of thin films depended on crystal orientation. The Bi3.5Nd0.5Ti3-xSixO12(BNTS) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization exhibit preferred (117) and (200) orientation and reduce leakage current densities about 10-8 A/cm2.
The best ferroelectric and dielectric properties were observed for Bi3.5Nd0.5Ti2.99Si0.01 O12 thin films derived with layer-by-layer crystallization annealed at 650℃, was measured to have a dielectric constant of 236, dielectric loss of 0.015, remanent polarization (2Pr) of 6.0(μC/cm2), and coercive field of 29.2kV/cm.
參考文獻
[1] A. D. Rae, J. G. Thompson, R. L. Withers and A. C. Willis,“Structure
refinement of commensurately modulated bismuth titanate, Bi4Ti3O12”,
Acta Crystallogr., B46, 474-487, 1990.
[2] A. Kakimi, S. Okamura, S. Ando and T. Tsukamoto,“Effects of O2 Gas
Pressure in Heat Treatment on Surface Morphology and Electric Properties
of Ferroelectric Bi4Ti3O12 Thin Films with c-Axis Orientation” Jpn. J. Appl.
Phys., 34, 5193-5197, 1995.
[3] A. Kingon, “Device physics: Memories are made of ...”, Nature (London)
401, 658-659, 1999.
[4] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H. D. Kim,
T. H. Kim, and W. Jo, “Differences in nature of defects between
SrBi2Ta2O9 and Bi4Ti3O12” Appl. Phys. Lett. 74, 1907-1909, 1999.
[5] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo,
“Lanthanum-substituted bismuth titanate for use in non-volatile
memories” , Nature (London), 401, 682-684, 1999.
[6] B. S. Kang, B. H. Park, S. D. Bu, S. H. Kang, and T. W. Noh, “Different
fatigue behaviors of SrBi2Ta2O9 and Bi3TiTaO9 films: Role of perovskite
layers” Appl. Phys. Lett. 75 , 2644-2646, 1999.
[7] B. Prince, “Emerging Memories-Technologies and Trend”, Kluwer
Academic Publishers, Chap. 4, 2002
[8] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and
J. F. Scott, “Fatigue-free ferroelectric capacitors with platinum electrodes”,
Nature (London) 374, 627-629, 1995.
[9] C. A. Araujo, J. D. Cuchiaro, M. C. Scott and L. D.McMillan ,
“Ferroelectric dielectric memory cell can switch at Least giga cycles and
has low fatigue―has high dielectric constant and low leakage current.” US
Patent No. 5, 234 , 519, 1996.
[10] C. P. D. Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric thin films,
synthesis and basic properties” ,Gordon and Breach Science Publishers,
193, 1996.
[11] D. Bao, N. Wakiya, K. Shinozaki and N. Mizutani, “Ferroelectric
properties of sandwich structured (Bi, La)4T3O12/Pb(Zr, Ti)O3/
(Bi, La)4Ti3O12 thin films on Pt/Ti/SiO2/Si substrates”, J Phys.
D:Appl. Phys. 35, 1-5, 2002.
[12] D. Wu, A. D. Li, T. Yu, N. B. Ming, “Preparation and electrical
properties of Bi3.25Pr 0.75Ti3O12 ferroelectric thin films”, Appl. Phys. A 78,
95-99, 2004.
[13] E. A. Kneer, D. P. Birnie, R. D. Schrimpf, J. C. Podlesny, and
G.. Teowee, “Investigation of surface roughness and hillock formation on
platinized substrates used for Pt/PZT/Pt capacitor fabrication”, Integrated
Ferroelectrics , 7, 61-73, 1995.
[14] G. A. Somolenskii, V. A. Isupov, and A . I. Agranovskaya, “A New
Group of Ferroelectrics”Soviet Phys. Solid State 1, 149, 1959.
[15] G. A. Somolenskii, V. A. Isupov, and A . I. Agranovskaya,
“Ferroelectrics of the oxygen-octahedral type with layered structure.
”Soviet Phys. Solid State 3, 651-655, 1961.
[16] G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G.. Derbenwick, and
C. Mazure,“Influence of Ti-content in the bottom electrodes on the
ferroelectric properties of SrBi2Ta2O9 (SBT)”, Integrated Ferroelectrics, 17,
421-432, 1997.
[17] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, Appl.
Phys. Lett., “Influence of platinum interlayers on the electrical properties of
RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor heterostructures”, 66, 239-241,
1995.
[18] H. Takasu , “Integrated ferroelectrics as a strategic device”Integrated
Ferroelectrics, 14, 1-10, 1997.
[19] H. N. Lee, Dietrich Hesse, “Anisotropic ferroelectric properties of
epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different
orientations”, Appl. Phys. Lett. 80, 1040-1042, 2002.
[20] H. N. Lee, Dietrich Hesse, Nikolai Zakharov, and Ulrich Gosele,
“Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-Axis Orientation on
Silicon Substrates”, Science 296, 2006-2009, 2002.
[21] H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima,
“Fabrication of M3+-Substituted and M3+/V5+-Cosubstituted Bismuth
Titanate Thin Films [M=lanthanoid] by Chemical Solution Deposition
Technique ”, Jpn. J. Appl. Phys. 41, 6820-6824, 2002.
[22] J. F. Scott, and C. A. Araujo, “Ferroelectric memory”, Science, 246,
1400-1405, 1989.
[23] J. K. Lee, T. K. Song, H. J. Jung, “Characteristics of SrBi2Ta2O9 thin
films fabricated by the r.f. magnetron sputtering technique”, Integrated
Ferroelectrics ,15, 115-125, 1997.
[24] J. F. Scott, “Ferroelectric Memories”, Springer, Germany, 2000.
[25] K. Sreenivas, I. Reaney, T. Maeder, and N. Setter, “Investigation of
Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”,
J. Appl. Phys. 75, 232, 1994.
[26] K. Amanuma, T. Hase and Y. Miyasaka, “Preparation and ferroelectric
properties of SrBi2Ta2O9 thin films” Appl. Phys. Lett. 66, 221-223, 1995.
[27] Kittel, “Introduction to solid state physics”, 7th ed. (John Wiley & Sons),
New York, Chap.13, 1996.
[28]K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D.
Mancini, T. Zhu, and J. Shi, J. Vac. “Process development of sub-0.5 μm
nonvolatile magnetoresistive random access memory arrays
”, Sci. Technol. B 15, 2274-2278, 1997.
[29] K. S. Hwang, H. A. Park, B. Soojung, B. A. Kang and
Y. H. Kim “Growth of the Bismuth Titanate films on textured oxide
electrode by the spin coating-pyrolysis” J. Sol-Gel Sci. & Tech. 23, 67-72,
2002.
[30] J. Zhai and H. Chen, “Ferroelectric properties of
Bi3.25La0.75Ti3O12 thin films grown on the highly oriented LaNiO3 buffered
Pt/Ti/SiO2/Si substrates”, Appl. Phys. Lett. 82, 442-444, 2003.
[31] L. B. Kong and J. Ma, “Randomly oriented Bi4Ti3O12 thin films derived
from a hybrid sol-gel process”, Thin solid Films ,379 , 89-93, 2000.
[32] M. S. Jahn, D. W. Cooke, H. Sheinbery, J. L. Smitch, and D. P. Lianps,
“Environmental Effects on Luminescence Yield of Superconducting YBa
sub 2 Cu sub 3 O sub x”, J. Mater. Res. 4, 759-762, 1989.
[33] M. Ohring, “The Materials Sciences of Thin Films”, Academic Press,
1992.
[34]M. Yamaguchi, K. Hiraki, T. Nagatomo and Y. Masuda, “Preparation and
Properties of Bi2SiO5/Si Structures”, J. J. Appl. Phys., 39, 5512–5516,
2000.
[35]M. E. Lines and A. M. Glass, “Principles and applications of
ferroelectrics and related materials”, Oxford University Press, New York,
Chap. 2-5, 2001.
[36] N. Ichinose and M. Nomura, “Electrical properties of (Bi, La)4Ti3O12
based thin films prepared by RF sputtering” Jpn. J. Appl. Phys. 35,
4960-4962, 1996.
[37] P. C. Joshi and S. B. Krupanidhi, “Structural and electrical studies on
rapid thermally processed ferroelectric Bi4Ti3O12 thin films by
metallo-organic solution deposition” J. Appl. Phys. 72, 5827-5833, 1992.
[38] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of
Interatomie Distances in Halides and Chaleogenides.” Acta Cryst. A32,
751-767 , 1976.
[39] R. Ramesh, J, Lee, T. Sands, V. G. Keramidas, and O. Auciello,
“Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O
heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate
template layer” Appl. Phys. Lett. 64, 2511-2513 ,1995.
[40] R. Dat, J. K. Lee, O. Auciello, and A. I. kingon, “Pulsed laser ablation
synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric
capacitors with practically no polarization fatigue”, Appl. Phys. Lett. 67,
572-574, 1995.
[41] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, kluwer
Academic, London, 1997.
[42] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer
Academic, Boston, Chap.8, 199, 1997.
[43] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer
Academic, Boston, Chap.9, 221, 1997.
[44] R. Iijima, “Factors controlling the a-axis orientation of strontium bismuth
tantalate thin films fabricated by chemical solution deposition”, Appl.
Phys. Lett. 79, 2240-2242, 2001.
[45] S. E. Cummins, L. E. cross,“Electrical and Optical Properties of
Ferroelectric Bi4Ti3O12 Single Crystals”, J. Appl. Phys., 39, 2268-2274,
1968.
[46] S. K. Dey and R. Zuleeg, "Integrated Sol-Gel PZT Thin-Films on Pt,
Si, and GaAs for Non-volatile Memory Applications," Ferroelectrics 108,
37-46, 1990.
[47] S. K. Kim, M. Miyayama, and H. Yanagida, “Electrical anisotropy and a
plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal”
Mater. Res. Bull. 31, 121-131, 1996.
[48] S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B.
Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, “Lead based ferroelectric
capacitors for low voltage non-volatile memory applications”, Integrated
Ferroelectrics ,19 , 159-177, 1998.
[49] S. T. Zhang, X. J. Zhang, H. W. Chang, Y. F. Chen, Z. G. Liu, and N. B.
Ming, “Enhanced electrical properties of c-axis epitaxial Nd-substituted
Bi4Ti3O12 thin films”, Appl. Phys. Lett. 83, 4378-4380, 2003.
[50] S. Tamura, Y. Omura and S. Nakahara, “Effect of Silicon Addition on
Electrical Properties of SrBi2Ta2O9 Thin Films”, J. J. Appl. Phys., 43,
7871–7875, 2004.
[51] Tingkai Li, Yongfei Zhu, and Seshu B. Desu., “Metalorganic chemical
vapor deposition of ferroelectric SrBi2Ta2O9 thin films” Appl. Phys. Lett.
68, 616-618, 1996.
[52] T. Maeder, L. Agalowicz, and P. Muralt, “Stabilized platinum
electrodes for ferroelectric film deposition using Ti, Ta and Zr adhesion
layers” Jpn. J. Appl. Phys. 37, 2007-2012, 1998.
[53] T. Kijima and H. Ishiwara, “Si-Substituted Ultrathin Ferroelectric
Films”, Jpn. J. Appl. Phys., 41, 716–719, 2002.
[54] T. Watanabe, H. Funakubo, Minoru Osada, Y. Noguchi, and M.
Miyayama, “Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on
the low-temperature deposition” Appl. Phys. Lett. 80, 100-102, 2002.
[55] U. Chon, J. S. Shim, and H. M. Jang, “Ferroelectric properties of
Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition” J.
Appl. Phys., 88, 5941-5945, 2000.
[56] U. Chou, K. B. Kim, H. M. Jang, G. C. Yi, “Elastic force analysis of
functional polymer submicron oscillators”, Appl. Phys. Lett. 79,3137-3175,
2001.
[57] U. Chou, J. S. Shim, H. M. Jang, “Ferroelectric properties and crystal
structure of praseodymium-modified bismuth titanate” J. Appl. Phys. 93,
4769-4775, 2003.
[58] W. D. Kingery, H. K. Brown, and D. R. Uhlmann, “Introduction to
ceramics”, 2nd Ed., John Wiley and Sons, New York, Chap. 2, 1976.
[59] W. D. Callister, Jr., “ Materials Science and Engineering“”, 4th ed.
Wiely, New York, Chap. 3-4, 1985.
[60] W. Sakamoto, Y. Mizutani, N. Iizawa, T. Yogo, T. Hayashi, and S.
Hirano, “Fabrication and properties of Ge-doped (Bi,Nd)4Ti 3O12 thin
films by chemical solution deposition”, Jpn. J. Appl. Phys., 43, 6599-6603,
2004.
[61] W. Takayuki, U. Hiroshi, M. Hirofumi, K. Masahiro, I. Takashi, K.
Seiichiro, F. Hiroshi, “Structural and electrical properties of polycrystalline
Bi 4-xNdxTi3O12 ferroelectric thin films with in-plane c-axis orientations”
, Jpn. J. of Appl. Phys , Part:2 Letters ,44, L292-L294, 2005.
[62] X. F. Du and I. W. Chen, J. Am. Ceram. “Ferroelectric thin films of
bismuth-containing layered perovskites: Part I, Bi4Ti3O12”, Soc., 81,
3253-3259, 1998.
[63] X. L. Zhong, J. B. Wang, X. J. Zheng, and Y. C. Zhou, “Structure
evolution and ferroelectric and dielectric properties of Bi 3.5Nd0.5Ti3O12 thin
films under a moderate temperature annealing”, Appl. Phys. Lett.,85 ,
5661-5663, 2004.
[64] Y. Tokura, H. Takagi, and S. Uchida, “A superconducting copper
oxide compound with electrons as the charge carriers”, Nature, 337,
345-347, 1989.
[65] Y. Xu, “Ferroelectric Materials and Their Applications ”, North-Holland,
Netherlands, 1991.
[66] Y. Ding, J. S. Liu, H. X. Qin, J. S. Zhu, and Wang, “Why
lanthanum-substituted bismuth titanate becomes fatigue free in a
ferroelectric capacitor with platinum electrodes”, Appl. Phys. Lett. 78,
4175-4177, 2001.
[67] Y. Shimakawa, Y. Kubo,Y. Tauchi, H. Asano, T. Kamiyama, F. I
zumi and Z. Hiroi, “Crystal and electronic structures of Bi4–xLaxTi3O12
ferroelectric materials”, Appl. Phys. Lett. 79, 2791-2793, 2001.
[68] Y. M. Sun, Y. C. Chen, J. C. Hwang, J. Y. Gan,“Orientation-dependent
grain growth in La-doped bismuth titanate thin films prepared by chemical
solution deposition” , Jpn. J. Appl. Phys. , 41, 892-894, 2002.
[69] Y. Idemoto, T. Miyahara, N. Koura, T. Kijima, H. Ishiwara, “Crystal
structure and ferroelectric properties of (Bi,La)4(Ti,Si)3O12 as a bulk
ferroelectric material”, Solid State Communications 128, 255–259, 2003.
[70] Y. C. Chen, Y. M. Sun, C. P. Lin and J. Y. Gan, “Enhanced
a-axis-oriented crystal growth of Nd-substituted bismuth titanate thin
films with layer-by-layer crystallization”, Journal of Crystal Growth, 268,
210-214, 2004.
[71] Y. Idemoto, T. Takahashi, N. Koura and Chun-K. Loong, “Crystal
Structure and Ferroelectric Properties of Si Added SrBi2Ta2O9 ”, Jap. J.
Appl. Phys., 45, 5091-5097, 2006.
[72]“FRAM Guide Book, Chapter 1”, Fujitsu Web Page <www.fujistu.com> .
[73]“Ferroelectric Thin Film Technology for Semiconductor Memory”,
Semicond. Sci Technol 10,375-379,1995.
[74] 李雅明, 固態電子學, 全華科技, 161-172, 1995.
[75] 李雅明, 吳世全, 陳宏名, 鐵電記憶元件, 電子月刊,第二卷第九
期, 68-84, 1996.
[76] 吳朗, 電工材料(滄海書局), Chapter5, 252-351, 1998.
[77] 孫郁明,“添加鑭系元素(La,Sm)之鈦酸鉍鐵電薄膜應用於非揮發
性記憶體之研究” ,清華大學,博士論文,2003.
[78] 沈柏元,“以氧化物底電極控制鐵電薄膜結晶方向之研究”,交通大學,博士論文,p.12,p.60,2002.