簡易檢索 / 詳目顯示

研究生: 林千琪
Lin, Chien-chi
論文名稱: 摻雜矽之鉍釹鈦鐵電薄膜製備與特性
Fabrication and Characterization of Si-doped Bi3.5Nd0.5Ti3O12 Ferroelectric Thin Films
指導教授: 洪敏雄
Hon, Min-hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 129
中文關鍵詞: 鉍釹鈦鐵電薄膜
外文關鍵詞: Bi3.5Nd0.5Ti4O12, ferroelectric thin film, Si
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    鉍釹鈦(Bi3.5Nd0.5Ti3O12 ,BNT)為一種層狀鈣鈦礦結構之鐵電薄膜,具有優異的鐵電性質,多用於非揮發性記憶體元件。本文主要研究摻雜矽之鉍釹鈦鐵電薄膜製備與特性。利用化學溶液鍍膜法(Chemical solution deposition,CSD)於鎳酸鑭電極基板(LaNiO3/Si)上鍍覆所得到之鐵電薄膜,探討Si摻雜對於薄膜晶體結構、介電特性、漏電流特性以及鐵電性質之影響。
    Si摻雜於BNT薄膜可使結晶溫度降低、晶粒細化、表面粗糙度下降。而薄膜之電性易受結晶指向之影響,所以本研究再利用分層結晶(layer-by-layer crystallization)的熱處理方式,於鎳酸鑭電極基板上可製作出具有(117)與(200)優選指向之薄膜。藉由Si摻雜以及分層結晶熱處理製作出的BNT薄膜,漏電流明顯的獲得改善(J<10-8)。於650℃分層結晶熱處理溫度下Si摻雜量為x=0.01時,可得到較佳的鐵電以及介電性質,殘存極化量(2Pr)為6.0(μC/cm2),矯頑電場(Ec)為29.2kV/cm,於頻率1MHz下介電常數為236,而散逸因子0.015。

    Abstract
    Bi3.5Nd0.5Ti3O12(BNT) thin films of layered perovskite structure, which is currently used as capacitor material in ferroelectric memory. Si-doped BNT ferroelectric thin films was investigated in this research. The thin films were prepared on LaNiO3/Si using chemical solution deposition (CSD) technique. The crystal structure, dielectric, leakage current and ferroelectric properties of Si-doped BNT thin films were examined in this work.
    Silicon (Si)-substituted BNT thin films are expected to reduce the processing temperature and show good surface morphology with relatively small grain. The electric properties of thin films depended on crystal orientation. The Bi3.5Nd0.5Ti3-xSixO12(BNTS) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization exhibit preferred (117) and (200) orientation and reduce leakage current densities about 10-8 A/cm2.
    The best ferroelectric and dielectric properties were observed for Bi3.5Nd0.5Ti2.99Si0.01 O12 thin films derived with layer-by-layer crystallization annealed at 650℃, was measured to have a dielectric constant of 236, dielectric loss of 0.015, remanent polarization (2Pr) of 6.0(μC/cm2), and coercive field of 29.2kV/cm.

    總目錄 中文摘要…………………………………………………………………Ⅰ 英文摘要…………………………………………………………………Ⅱ 誌謝感言…………………………………………………………………Ⅲ 總目錄……………………………………………………………………Ⅳ 圖目錄……………………………………………………………………Ⅷ 表目錄……………………………………………………………………ⅩⅣ 第一章 緒論……………………………………………………………1 1-1 簡介……………………………………………………………1 1-2 鐵電材料的發展………………………………………………1 1-3 研究動機………………………………………………………2 第二章 文獻回顧………………………………………………………5 2-1 鐵電材料………………………………………………………5 2-1-1 晶體結構與特性…………………………………………5 2-1-2 鐵電材料的特性…………………………………………7 2-1-3 鈣鈦礦結構………………………………………………8 2-1-4 鐵電晶域與電滯曲線……………………………………10 2-1-5 鐵電記憶體的操作原理…………………………………12 2-2 層狀鈣鈦礦結構………………………………………………16 2-2-1 鉭酸鍶鉍鐵電薄膜………………………………………16 2-2-2 鈦酸鉍鐵電薄膜…………………………………………16 2-2-2-1 鈦酸鉍添加鑭系元素………………………………19 2-2-2-2 Si摻雜………………………………………………20 2-3 鐵電薄膜的製作方式…………………………………………21 2-4 電極……………………………………………………………23 2-4-1 金屬電極…………………………………………………23 2-4-2 鈣鈦礦結構之氧化物電極………………………………23 2-5 極化現象與介電特性…………………………………………25 2-5-1 介電損耗…………………………………………………29 2-6 漏電流機制……………………………………………………31 第三章 實驗方法與步驟………………………………………………34 3-1 實驗流程圖……………………………………………………34 3-2 鐵電電容下電極基板之製備…………………………………35 3-2-1 LaNiO3/Si基板之製備…………………………………35 3-3 Bi3.5Nd0.5Ti3-xSixO12鐵電薄膜的製備 …………………………38 3-3-1 Bi3.5Nd0.5Ti3-xSixO12溶液的配製…………………………38 3-3-2 Bi3.5Nd0.5Ti3-xSixO12鍍膜被覆與熱處理…………………39 3-4 Pt上電極之製作………………………………………………43 3-5 鐵電薄膜的特性檢測 …………………………………………44 3-5-1 多功能X光薄膜繞射儀(XRD)……………………………44 3-5-2 場發射掃描式電子顯微鏡(SEM)…………………………44 3-5-3 歐傑電子光譜儀(AES)……………………………………44 3-5-4 原子力顯微鏡(AFM)………………………………………45 3-5-5 熱重/熱差分析(TG/DTA)…………………………………45 3-6 Pt/BNTS/LNO鐵電電容之電性量測……………………………46 3-6-1 漏電流量測…………………………………………………46 3-6-2 介電特性量測………………………………………………46 3-6-3 電滯量測……………………………………………………46 第四章 問題與討論………………………………………………………49 4-1 Si摻雜Bi3.5Nd0.5Ti3O12薄膜性質…………………………………49 4-1-1 Bi3.5Nd0.5Ti3-xSixO12晶體之熱性質…………………………49 4-1-2 Bi3.5Nd0.5Ti3-xSixO12薄膜晶體結構…………………………53 4-1-3 Bi3.5Nd0.5Ti3-xSixO12薄膜表面微結構………………………59 4-1-4 Bi3.5Nd0.5Ti3-xSixO12薄膜漏電流……………………………70 4-2 分層結晶製備BNTSx薄膜 ………………………………………75 4-2-1 分層結晶BNTSx薄膜的晶體結構…………………………76 4-2-2 分層結晶BNTSx薄膜表面微結構…………………………82 4-2-3 分層結晶BNTSx薄膜漏電流特性…………………………87 4-2-4 分層結晶BNTSx薄膜之介電特性…………………………90 4-2-5 分層結晶BNTSx薄膜之鐵電特性…………………………95 第五章 結論 ……………………………………………………………100 參考資料..……………….…………………………………………………102 圖目錄 Fig.2-1 The relationship of paraelectricity, piezoelectricity, pyroelectricity and ferroelectricity…………………………………………………6 Fig.2-2 ABO3 perovskite unit cell …………………………………………9 Fig.2-3 Ionic displacements in PZT ……………………………………….9 Fig.2-4 Hysteresis loop of a ferroelectric material ………………………..14 Fig2-5 One Transistor-One Capacitor (1T-1C) of FRAM cell structure……15 Fig.2-6 Lattice structure of the Strontium bismuth tantalite ………………17 Fig.2-7 Lattice structure of the bismuth titanate…………………………...18 Fig.2-8 Schematic representation of different mechanisms of polarization. …………………………………………………….………………26 Fig.2-9 Frequency dependence of several contributions to the polarization. …………………………………………………….………………28 Fig.2-10 I-V phase of dielectric material……………………………………30 Fig.3-1 The process for preparing Pt/BNTS/LNO/Si ferroelectric device. ……………………………………………………………………..34 Fig.3-2 The cleaning process of silscon wafer ……………………………35 Fig.3-3 The process for preparing LNO electrode by chemical solution method………….……………………………………………………37 Fig.3-4 The spin coating process...…………………………………………..40 Fig.3-5 The process for preparing BNTSx thin films by chemical solution method…………………….…………………………………………41 Fig.3-6 The process for preparing BNTS thin films prepared with layer-by-layer crystallization..……………………………………….42 Fig.3-7 The final structural drawing of BNTS device...……………………..43 Fig.3-8 Schematic drawing of HP-4140 testingsystem .…………………….47 Fig.3-9 Schematic drawing of HP-4284A multi-frequency LCR meter. …………………………………………………….…………………47 Fig.3-10 Schematic drawing of IBM computer controlled RT-66A testing system………………………………………………………………48 Fig.4-1 DTA/TG analysis of BNT with a heating rate of 10℃/min in air. ………………………………………….…………………………..51 Fig.4-2 DTA/TG analysis of BNTSx (x=0.1) with a heating rate of 10℃/min in air…………………………………..…………………..52 Fig.4-3 X-ray diffraction patterns of BNTSx (x=0, 0.03, 0.05, 0.1) thin films grown on LNO/Si substrate as annealed at 600℃ for 1 hr. ………………………………………………………………………55 Fig.4-4 X-ray diffraction patterns of BNTSx (x=0, 0.03, 0.05, 0.1) thin films grown on LNO/Si substrate as annealed at 650℃ for 1 hr. ………………………………………………………………………56 Fig.4-5 X-ray diffraction patterns of BNTSx (x=0, 0.03, 0.05, 0.1) thin films grown on LNO/Si substrate as annealed at 700℃ for 1 hr. ………………………………………………………………………57 Fig.4-6 The α intensity of BNTS(x=0, 0.03, 0.05, 0.1) thin films grown on LNO/Si substrate as annealed at different temperature for 1 hr. ………………………………………………………………………58 Fig.4-7 SEM surface and cross section micrographs of (a) BNT (b) BNTSx (x=0.03) (c) BNTSx (x=0.05) (d) BNTSx (x=0.1) thin films grown on LNO/Si substrate as annealed at 600℃ for 1 hr……………………..61 Fig.4-8 AFM 2-D images and surface roughness of (a) BNT (b) BNTSx (x=0.03) (c) BNTSx (x=0.05) (d) BNTSx (x=0.1) thin films grown on LNO/Si substrate as annealed at 600℃ for 1 hr……………...……...63 Fig.4-9 SEM surface and cross section micrographs of (a) BNT (b) BNTSx (x=0.03) (c) BNTSx (x=0.05) (d) BNTSx (x=0.1) thin films grown on LNO/Si substrate as annealed at 650℃ for 1 hr……………………..64 Fig.4-10 AFM 2-D images and surface roughness of (a) BNT (b) BNTSx (x=0.03) (c) BNTSx (x=0.05) (d) BNTSx (x=0.1) thin films grown on LNO/Si substrate as annealed at 650℃ for 1 hr………………...….66 Fig.4-11 SEM surface and cross section micrographs of (a) BNT (b) BNTSx (x=0.03) (c) BNTSx (x=0.05) (d) BNTSx (x=0.1) thin films grown on LNO/Si substrate as annealed at 700℃ for 1 hr..…………………..67 Fig.4-12 AFM 2-D images and surface roughness of (a) BNT (b) BNTSx (x=0.03) (c) BNTSx (x=0.05) (d) BNTSx (x=0.1) thin films grown on LNO/Si substrate as annealed at 700℃ for 1 hr………..…………..69 Fig.4-13 The leakage current density-electric field(J-E) behavior of BNTS(x=0, 0.03, 0.05, 0.1) thin films grown on LNO/Si substrate as annealed at 600℃ for 1 hr………………………...…..72 Fig.4-14 The leakage current density-electric field(J-E) behavior of BNTS(x=0, 0.03, 0.05, 0.1) thin films grown on LNO/Si substrate as annealed at 650℃ for 1 hr………………………...…..73 Fig.4-15 The leakage current density-electric field(J-E) behavior of BNTS(x=0, 0.03, 0.05, 0.1) thin films grown on LNO/Si substrate as annealed at 700℃ for 1 hr……………………...……..74 Fig4-16 X-ray diffraction patterns of BNTSx (x=0, 0.01, 0.03, 0.1) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization annealed at 650℃………………………………...….78 Fig4-17 X-ray diffraction patterns of BNTSx (x=0, 0.01, 0.03, 0.1) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization annealed at 700℃………………………………...….79 Fig 4-18 The detail scan of (117) diffraction of BNTSx (x=0, 0.01, 0.03, 0.1) thin films annealed at (a) 650℃ (b) 700℃ on LNO/Si substrate derived with layer-by-layer crystallization…………………...…….80 Fig.4-19 SEM micrographs of (a) BNT (b) BNTSx (x=0.01) (c) BNTSx (x=0.03) (d) BNTSx (x=0.1) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization annealed at 650℃. ………………………………………………………………..…….83 Fig.4-20 AFM 2-D images and surface roughness of (a) BNT (b) BNTSx (x=0.01) (c) BNTSx (x=0.03) (d) BNTSx (x=0.1) thin films derived with layer-by-layer crystallization annealed at 650℃. …………………………………………………………………...…84 Fig.4-21 SEM micrographs of (a) BNT (b) BNTSx (x=0.01) (c) BNTSx (x=0.03) (d) BNTSx (x=0.1) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization annealed at 700℃. ………………………………………………………………….….85 Fig.4-22 AFM 2-D images and surface roughness of (a) BNT, (b) BNTS(x=0.01), (c) BNTS(x=0.03), (d) BNTS(x=0.1) thin films derived with layer-by-layer crystallization annealed at 700℃. …………………………………………………………………..….86 Fig.4-23 The leakage current density-electric field(J-E) behavior of BNTS(x=0, 0.01, 0.03, 0.1) thin films derived with layer-by-layer crystallization annealed at 650℃…………………………….…….88 Fig.4-24 The leakage current density-electric field(J-E) behavior of BNTS(x=0, 0.01, 0.03, 0.1) thin films derived with layer-by-layer crystallization annealed at 700℃……………………………..……89 Fig.4-25 Dielectric properties of BNTS(x=0, 0.01, 0.03, 0.1) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization annealed at 650℃……………………………….….92 Fig.4-26 Dielectric properties of BNTS(x=0, 0.01, 0.03, 0.1) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization annealed at 700℃…………………………………..93 Fig.4-27 Dielectric constant of BNTS(x=0, 0.01, 0.03, 0.1) thin films grown on LNO/Si substrate derived with layer-by-layer crystallization annealed at different temperature………………..…94 Fig.4-28 Polarization hysteresis loops for (a) BNT, (b) BNTS(x=0.01), (c) BNTS(x=0.03), (d) BNTS(x=0.1) thin films derived with layer-by-layer crystallization annealed at 650℃……………….…..96 Fig.4-29 The relation between double remanent polarization (2Pr) for BNTS(x=0, 0.01, 0.03, 0.1) thin films annealed at 650℃…………97 Fig.4-30 Polarization hysteresis loops for (a) BNT, (b) BNTS(x=0.01), (c) BNTS(x=0.03), (d) BNTS(x=0.1) thin films derived with layer-by-layer crystallization annealed at 700℃……………….…..98 Fig.4-31 The AES images of BNTS(x=0.1) thin films derived with layer-by-layer crystallization annealed at 700℃ …………………99 表目錄 Table 1-1 Comparison between FRAM and other Memories…………...…4 Table 2-1 The technology requirements of FeRAM……………………..…13 Table 3-1 Detail chemical information about the precursors of LNO…..….36 Table 3-2 Detail chemical information about the precursors of BNTSx……38 Table 4-1 The lattice constant of BNTS(x=0, 0.01, 0.03, 0.1) thin films annealed at 650℃……………………………….……81 Table 4-2 The lattice constant of BNTS(x=0, 0.01, 0.03, 0.1) thin films annealed at 700℃………………………………….…81

    參考文獻
    [1] A. D. Rae, J. G. Thompson, R. L. Withers and A. C. Willis,“Structure
    refinement of commensurately modulated bismuth titanate, Bi4Ti3O12”,
    Acta Crystallogr., B46, 474-487, 1990.
    [2] A. Kakimi, S. Okamura, S. Ando and T. Tsukamoto,“Effects of O2 Gas
    Pressure in Heat Treatment on Surface Morphology and Electric Properties
    of Ferroelectric Bi4Ti3O12 Thin Films with c-Axis Orientation” Jpn. J. Appl.
    Phys., 34, 5193-5197, 1995.
    [3] A. Kingon, “Device physics: Memories are made of ...”, Nature (London)
    401, 658-659, 1999.
    [4] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H. D. Kim,
    T. H. Kim, and W. Jo, “Differences in nature of defects between
    SrBi2Ta2O9 and Bi4Ti3O12” Appl. Phys. Lett. 74, 1907-1909, 1999.
    [5] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo,
    “Lanthanum-substituted bismuth titanate for use in non-volatile
    memories” , Nature (London), 401, 682-684, 1999.
    [6] B. S. Kang, B. H. Park, S. D. Bu, S. H. Kang, and T. W. Noh, “Different
    fatigue behaviors of SrBi2Ta2O9 and Bi3TiTaO9 films: Role of perovskite
    layers” Appl. Phys. Lett. 75 , 2644-2646, 1999.
    [7] B. Prince, “Emerging Memories-Technologies and Trend”, Kluwer
    Academic Publishers, Chap. 4, 2002
    [8] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and
    J. F. Scott, “Fatigue-free ferroelectric capacitors with platinum electrodes”,
    Nature (London) 374, 627-629, 1995.
    [9] C. A. Araujo, J. D. Cuchiaro, M. C. Scott and L. D.McMillan ,
    “Ferroelectric dielectric memory cell can switch at Least giga cycles and
    has low fatigue―has high dielectric constant and low leakage current.” US
    Patent No. 5, 234 , 519, 1996.
    [10] C. P. D. Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric thin films,
    synthesis and basic properties” ,Gordon and Breach Science Publishers,
    193, 1996.
    [11] D. Bao, N. Wakiya, K. Shinozaki and N. Mizutani, “Ferroelectric
    properties of sandwich structured (Bi, La)4T3O12/Pb(Zr, Ti)O3/
    (Bi, La)4Ti3O12 thin films on Pt/Ti/SiO2/Si substrates”, J Phys.
    D:Appl. Phys. 35, 1-5, 2002.
    [12] D. Wu, A. D. Li, T. Yu, N. B. Ming, “Preparation and electrical
    properties of Bi3.25Pr 0.75Ti3O12 ferroelectric thin films”, Appl. Phys. A 78,
    95-99, 2004.
    [13] E. A. Kneer, D. P. Birnie, R. D. Schrimpf, J. C. Podlesny, and
    G.. Teowee, “Investigation of surface roughness and hillock formation on
    platinized substrates used for Pt/PZT/Pt capacitor fabrication”, Integrated
    Ferroelectrics , 7, 61-73, 1995.
    [14] G. A. Somolenskii, V. A. Isupov, and A . I. Agranovskaya, “A New
    Group of Ferroelectrics”Soviet Phys. Solid State 1, 149, 1959.
    [15] G. A. Somolenskii, V. A. Isupov, and A . I. Agranovskaya,
    “Ferroelectrics of the oxygen-octahedral type with layered structure.
    ”Soviet Phys. Solid State 3, 651-655, 1961.
    [16] G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G.. Derbenwick, and
    C. Mazure,“Influence of Ti-content in the bottom electrodes on the
    ferroelectric properties of SrBi2Ta2O9 (SBT)”, Integrated Ferroelectrics, 17,
    421-432, 1997.
    [17] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, Appl.
    Phys. Lett., “Influence of platinum interlayers on the electrical properties of
    RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor heterostructures”, 66, 239-241,
    1995.
    [18] H. Takasu , “Integrated ferroelectrics as a strategic device”Integrated
    Ferroelectrics, 14, 1-10, 1997.
    [19] H. N. Lee, Dietrich Hesse, “Anisotropic ferroelectric properties of
    epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different
    orientations”, Appl. Phys. Lett. 80, 1040-1042, 2002.
    [20] H. N. Lee, Dietrich Hesse, Nikolai Zakharov, and Ulrich Gosele,
    “Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-Axis Orientation on
    Silicon Substrates”, Science 296, 2006-2009, 2002.
    [21] H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima,
    “Fabrication of M3+-Substituted and M3+/V5+-Cosubstituted Bismuth
    Titanate Thin Films [M=lanthanoid] by Chemical Solution Deposition
    Technique ”, Jpn. J. Appl. Phys. 41, 6820-6824, 2002.
    [22] J. F. Scott, and C. A. Araujo, “Ferroelectric memory”, Science, 246,
    1400-1405, 1989.
    [23] J. K. Lee, T. K. Song, H. J. Jung, “Characteristics of SrBi2Ta2O9 thin
    films fabricated by the r.f. magnetron sputtering technique”, Integrated
    Ferroelectrics ,15, 115-125, 1997.
    [24] J. F. Scott, “Ferroelectric Memories”, Springer, Germany, 2000.
    [25] K. Sreenivas, I. Reaney, T. Maeder, and N. Setter, “Investigation of
    Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”,
    J. Appl. Phys. 75, 232, 1994.
    [26] K. Amanuma, T. Hase and Y. Miyasaka, “Preparation and ferroelectric
    properties of SrBi2Ta2O9 thin films” Appl. Phys. Lett. 66, 221-223, 1995.
    [27] Kittel, “Introduction to solid state physics”, 7th ed. (John Wiley & Sons),
    New York, Chap.13, 1996.
    [28]K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D.
    Mancini, T. Zhu, and J. Shi, J. Vac. “Process development of sub-0.5 μm
    nonvolatile magnetoresistive random access memory arrays
    ”, Sci. Technol. B 15, 2274-2278, 1997.
    [29] K. S. Hwang, H. A. Park, B. Soojung, B. A. Kang and
    Y. H. Kim “Growth of the Bismuth Titanate films on textured oxide
    electrode by the spin coating-pyrolysis” J. Sol-Gel Sci. & Tech. 23, 67-72,
    2002.
    [30] J. Zhai and H. Chen, “Ferroelectric properties of
    Bi3.25La0.75Ti3O12 thin films grown on the highly oriented LaNiO3 buffered
    Pt/Ti/SiO2/Si substrates”, Appl. Phys. Lett. 82, 442-444, 2003.
    [31] L. B. Kong and J. Ma, “Randomly oriented Bi4Ti3O12 thin films derived
    from a hybrid sol-gel process”, Thin solid Films ,379 , 89-93, 2000.
    [32] M. S. Jahn, D. W. Cooke, H. Sheinbery, J. L. Smitch, and D. P. Lianps,
    “Environmental Effects on Luminescence Yield of Superconducting YBa
    sub 2 Cu sub 3 O sub x”, J. Mater. Res. 4, 759-762, 1989.
    [33] M. Ohring, “The Materials Sciences of Thin Films”, Academic Press,
    1992.
    [34]M. Yamaguchi, K. Hiraki, T. Nagatomo and Y. Masuda, “Preparation and
    Properties of Bi2SiO5/Si Structures”, J. J. Appl. Phys., 39, 5512–5516,
    2000.
    [35]M. E. Lines and A. M. Glass, “Principles and applications of
    ferroelectrics and related materials”, Oxford University Press, New York,
    Chap. 2-5, 2001.
    [36] N. Ichinose and M. Nomura, “Electrical properties of (Bi, La)4Ti3O12
    based thin films prepared by RF sputtering” Jpn. J. Appl. Phys. 35,
    4960-4962, 1996.
    [37] P. C. Joshi and S. B. Krupanidhi, “Structural and electrical studies on
    rapid thermally processed ferroelectric Bi4Ti3O12 thin films by
    metallo-organic solution deposition” J. Appl. Phys. 72, 5827-5833, 1992.
    [38] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of
    Interatomie Distances in Halides and Chaleogenides.” Acta Cryst. A32,
    751-767 , 1976.
    [39] R. Ramesh, J, Lee, T. Sands, V. G. Keramidas, and O. Auciello,
    “Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O
    heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate
    template layer” Appl. Phys. Lett. 64, 2511-2513 ,1995.
    [40] R. Dat, J. K. Lee, O. Auciello, and A. I. kingon, “Pulsed laser ablation
    synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric
    capacitors with practically no polarization fatigue”, Appl. Phys. Lett. 67,
    572-574, 1995.
    [41] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, kluwer
    Academic, London, 1997.
    [42] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer
    Academic, Boston, Chap.8, 199, 1997.
    [43] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer
    Academic, Boston, Chap.9, 221, 1997.
    [44] R. Iijima, “Factors controlling the a-axis orientation of strontium bismuth
    tantalate thin films fabricated by chemical solution deposition”, Appl.
    Phys. Lett. 79, 2240-2242, 2001.
    [45] S. E. Cummins, L. E. cross,“Electrical and Optical Properties of
    Ferroelectric Bi4Ti3O12 Single Crystals”, J. Appl. Phys., 39, 2268-2274,
    1968.
    [46] S. K. Dey and R. Zuleeg, "Integrated Sol-Gel PZT Thin-Films on Pt,
    Si, and GaAs for Non-volatile Memory Applications," Ferroelectrics 108,
    37-46, 1990.
    [47] S. K. Kim, M. Miyayama, and H. Yanagida, “Electrical anisotropy and a
    plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal”
    Mater. Res. Bull. 31, 121-131, 1996.
    [48] S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B.
    Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, “Lead based ferroelectric
    capacitors for low voltage non-volatile memory applications”, Integrated
    Ferroelectrics ,19 , 159-177, 1998.
    [49] S. T. Zhang, X. J. Zhang, H. W. Chang, Y. F. Chen, Z. G. Liu, and N. B.
    Ming, “Enhanced electrical properties of c-axis epitaxial Nd-substituted
    Bi4Ti3O12 thin films”, Appl. Phys. Lett. 83, 4378-4380, 2003.
    [50] S. Tamura, Y. Omura and S. Nakahara, “Effect of Silicon Addition on
    Electrical Properties of SrBi2Ta2O9 Thin Films”, J. J. Appl. Phys., 43,
    7871–7875, 2004.
    [51] Tingkai Li, Yongfei Zhu, and Seshu B. Desu., “Metalorganic chemical
    vapor deposition of ferroelectric SrBi2Ta2O9 thin films” Appl. Phys. Lett.
    68, 616-618, 1996.
    [52] T. Maeder, L. Agalowicz, and P. Muralt, “Stabilized platinum
    electrodes for ferroelectric film deposition using Ti, Ta and Zr adhesion
    layers” Jpn. J. Appl. Phys. 37, 2007-2012, 1998.
    [53] T. Kijima and H. Ishiwara, “Si-Substituted Ultrathin Ferroelectric
    Films”, Jpn. J. Appl. Phys., 41, 716–719, 2002.
    [54] T. Watanabe, H. Funakubo, Minoru Osada, Y. Noguchi, and M.
    Miyayama, “Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on
    the low-temperature deposition” Appl. Phys. Lett. 80, 100-102, 2002.
    [55] U. Chon, J. S. Shim, and H. M. Jang, “Ferroelectric properties of
    Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition” J.
    Appl. Phys., 88, 5941-5945, 2000.
    [56] U. Chou, K. B. Kim, H. M. Jang, G. C. Yi, “Elastic force analysis of
    functional polymer submicron oscillators”, Appl. Phys. Lett. 79,3137-3175,
    2001.
    [57] U. Chou, J. S. Shim, H. M. Jang, “Ferroelectric properties and crystal
    structure of praseodymium-modified bismuth titanate” J. Appl. Phys. 93,
    4769-4775, 2003.
    [58] W. D. Kingery, H. K. Brown, and D. R. Uhlmann, “Introduction to
    ceramics”, 2nd Ed., John Wiley and Sons, New York, Chap. 2, 1976.
    [59] W. D. Callister, Jr., “ Materials Science and Engineering“”, 4th ed.
    Wiely, New York, Chap. 3-4, 1985.
    [60] W. Sakamoto, Y. Mizutani, N. Iizawa, T. Yogo, T. Hayashi, and S.
    Hirano, “Fabrication and properties of Ge-doped (Bi,Nd)4Ti 3O12 thin
    films by chemical solution deposition”, Jpn. J. Appl. Phys., 43, 6599-6603,
    2004.
    [61] W. Takayuki, U. Hiroshi, M. Hirofumi, K. Masahiro, I. Takashi, K.
    Seiichiro, F. Hiroshi, “Structural and electrical properties of polycrystalline
    Bi 4-xNdxTi3O12 ferroelectric thin films with in-plane c-axis orientations”
    , Jpn. J. of Appl. Phys , Part:2 Letters ,44, L292-L294, 2005.

    [62] X. F. Du and I. W. Chen, J. Am. Ceram. “Ferroelectric thin films of
    bismuth-containing layered perovskites: Part I, Bi4Ti3O12”, Soc., 81,
    3253-3259, 1998.
    [63] X. L. Zhong, J. B. Wang, X. J. Zheng, and Y. C. Zhou, “Structure
    evolution and ferroelectric and dielectric properties of Bi 3.5Nd0.5Ti3O12 thin
    films under a moderate temperature annealing”, Appl. Phys. Lett.,85 ,
    5661-5663, 2004.
    [64] Y. Tokura, H. Takagi, and S. Uchida, “A superconducting copper
    oxide compound with electrons as the charge carriers”, Nature, 337,
    345-347, 1989.
    [65] Y. Xu, “Ferroelectric Materials and Their Applications ”, North-Holland,
    Netherlands, 1991.
    [66] Y. Ding, J. S. Liu, H. X. Qin, J. S. Zhu, and Wang, “Why
    lanthanum-substituted bismuth titanate becomes fatigue free in a
    ferroelectric capacitor with platinum electrodes”, Appl. Phys. Lett. 78,
    4175-4177, 2001.
    [67] Y. Shimakawa, Y. Kubo,Y. Tauchi, H. Asano, T. Kamiyama, F. I
    zumi and Z. Hiroi, “Crystal and electronic structures of Bi4–xLaxTi3O12
    ferroelectric materials”, Appl. Phys. Lett. 79, 2791-2793, 2001.
    [68] Y. M. Sun, Y. C. Chen, J. C. Hwang, J. Y. Gan,“Orientation-dependent
    grain growth in La-doped bismuth titanate thin films prepared by chemical
    solution deposition” , Jpn. J. Appl. Phys. , 41, 892-894, 2002.
    [69] Y. Idemoto, T. Miyahara, N. Koura, T. Kijima, H. Ishiwara, “Crystal
    structure and ferroelectric properties of (Bi,La)4(Ti,Si)3O12 as a bulk
    ferroelectric material”, Solid State Communications 128, 255–259, 2003.
    [70] Y. C. Chen, Y. M. Sun, C. P. Lin and J. Y. Gan, “Enhanced
    a-axis-oriented crystal growth of Nd-substituted bismuth titanate thin
    films with layer-by-layer crystallization”, Journal of Crystal Growth, 268,
    210-214, 2004.
    [71] Y. Idemoto, T. Takahashi, N. Koura and Chun-K. Loong, “Crystal
    Structure and Ferroelectric Properties of Si Added SrBi2Ta2O9 ”, Jap. J.
    Appl. Phys., 45, 5091-5097, 2006.
    [72]“FRAM Guide Book, Chapter 1”, Fujitsu Web Page <www.fujistu.com> .
    [73]“Ferroelectric Thin Film Technology for Semiconductor Memory”,
    Semicond. Sci Technol 10,375-379,1995.
    [74] 李雅明, 固態電子學, 全華科技, 161-172, 1995.
    [75] 李雅明, 吳世全, 陳宏名, 鐵電記憶元件, 電子月刊,第二卷第九
    期, 68-84, 1996.
    [76] 吳朗, 電工材料(滄海書局), Chapter5, 252-351, 1998.
    [77] 孫郁明,“添加鑭系元素(La,Sm)之鈦酸鉍鐵電薄膜應用於非揮發
    性記憶體之研究” ,清華大學,博士論文,2003.
    [78] 沈柏元,“以氧化物底電極控制鐵電薄膜結晶方向之研究”,交通大學,博士論文,p.12,p.60,2002.

    下載圖示 校內:2008-07-21公開
    校外:2008-07-21公開
    QR CODE