簡易檢索 / 詳目顯示

研究生: 鹿耘豪
Lu, Yun-Hao
論文名稱: 厚膜印刷鋁電極導電性研究改善
Improvement on Conductivity for Thick Film Aluminum Electrode
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 49
中文關鍵詞: 鋁膏置換銅
外文關鍵詞: Aluminum Paste, Replacement Reaction
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在導電漿料製作技術中,導電金屬粉末是關鍵。對於導電漿料而言,導電粉末大多以金、銀等貴重金屬粉末為主,還有其它價格相對低的銅、鎳或鋁金屬粉末…等為輔,其中以銀導電漿料之應用最為廣泛。目前市面上較常見的導電膠料主要分為銀膠、鋁膠以及銅膠。其中銀膠可成為導電接著劑,主要是用合成樹脂為膠合劑以及金屬銀粉末為填充物所配製的複合性材料,其特點為導電性佳、導熱性佳及接合性佳等特點。除可取代一般導電焊接外,亦適用於不耐熱或無法焊接的材料,如塑膠、陶瓷等,且銀膠可應用的溫度範圍廣,並可在空氣中直接燒結使用,但因為銀粉價格昂貴,工業界期待有低成本、高性能的取代性金屬粉末出現。銅膠也可製作成導電接著劑,主要是利用合成樹脂為膠合劑以及金屬銅粉末為填充物所配置的複合性材料,其特點為導熱性、導電性佳,但是因為活性較大,銅具有必須於真空中燒結以及空氣中容易氧化等缺點。銅的價格則比銀便宜,但因為有氧化以及必須於真空爐內燒結的因素,目前仍然非市面上主流。鋁膠可藉由合成樹脂為膠合劑以及金屬鋁粉末為填充物所配置的複合性材料。雖然鋁膠也具有高導電導熱等性質,但和銅膠和銀膠相比還是較低的,但是因為鋁金屬粉末遠較銀、銅金屬粉末便宜,因此非常具有開發價值。
    近幾年來由於貴重金屬價格的飆升,使得導電漿料成本增加,因此以低成本之導電金屬粉末代替貴金屬製作電子漿料已成為未來發展的趨勢,本論文針對其中一種開發中金屬粉末當基底,藉由置換反應鍍上銅,提升整體的導電性以及降低其阻值。進而可以用較低的成本,將導電性和阻值提升至接近金、銀等貴重金屬粉末的水準。
    本論文研究的金屬粉末為鋁金屬粉末,先用鋁金屬粉末調配兩種高固含量但不同比例的導電鋁膏,再經由網版印刷於氧化鋁基板上,後經由高溫燒結,並將其作為基底,再使用過飽和硫酸銅溶液來進行化鍍銅實驗。本實驗主要分為兩大方向,其一為固定溫度,改變浸泡硫酸銅溶液時間,觀察化鍍後產品其電阻值、外觀、微結構、以及所鍍之銅厚的相關變化。其二則是固定時間,改變浸泡硫酸銅溶液時的溫度,觀察化鍍後產品其電阻值、外觀、微結構、以及所鍍之銅厚的相關變化。
    透過實驗與分析,可發現有以下趨勢 : 同樣的時間內,溫度較高的置換反應溫度,較易使得銅上鍍。化鍍後的銅厚度,會隨置換反應時間增加而增厚,但是卻有一極限值,無法不斷增加。置換反應後銅的緻密性會大幅影響電性,如銅生成越緻密,則電性越佳,反之則相反。除此之外,鋁膏的固含量比例會影響置換反應後銅的上鍍性,鋁膏固含量越高,越容易上鍍,在低溫時,此現象更明顯。

    In the conductive paste production technology, conductive metal powder plays an important role on this brand new technology. For the conductive paste, the powders are majority of precious metal powder, including: gold, silver and other relatively low cost of copper, nickel or aluminum metal powder. Nevertheless, conductive slurry of silver is the most widely used. In recent years, due to the rising price of precious metals, making the cost of conductive paste increasing, then low-cost conductive metal powder replace precious metal production in electronic slurry field has become the future development trend.
    In this thesis, we choose one of the metal powder as the based-material, and enhance the overall conductivity and reduce its resistance by replacing with copper on it. And then it can be used with a lower cost process, which improve the conductivity and resistance to close to gold, silver and other precious metal powder level.
    In this thesis, we choose aluminum as the metal powder. First we conducted aluminum powder with two high solid content but different fraction of conductive aluminum paste, and then printing on the alumina substrate through the screen printing process, conducted high temperature sintering in the end. And then using supersaturated copper sulfate solution to carry out copper plating experiments. The experiment is mainly divided into two parts, one is the fixed temperature thus change the soaking time of soaking copper sulfate solution, then observe the relevant of changes of the resistance for the product after plating, appearance, microstructure, and the copper thickness. The second is the fixed time, change the temperature of soaking the copper sulfate solution, then observe relevant performance.
    Through experiments and analysis, we can make some conclusion of following trends: The higher temperature of the copper plating solution is easier to plating in the same time; The copper thickness after plating will thicken when the plating time increasing, but there is a limitation value. The fraction of solid content of aluminum paste will affect the copper plating performance; Higher content of aluminum paste, which is more easy to plating, especially at low temperatures.

    摘要 I Summary III Introduction IV Materials and Methods IV Results and Discussion V Conclusion V 誌謝 VI Chapter 1 序論 1 1-1 前言 1 1-2 研究動機 2 1-3 章節概述 3 Chapter 2 文獻回顧 4 2-1 非電鍍(Electroless plating) 4 2-1-1 化學鍍 4 化鍍液調配 5 前處理和後續清潔 6 2-1-2化學置換反應 6 2-1-3矽晶太陽能電池 8 Chapter 3 實驗與討論 9 3-1 實驗架構 9 3-2 實驗步驟 10 3-2-1 調配鋁膏 10 3-2-2 網印與高溫燒結 11 3-2-3 試片前處理 12 3-2-4 調配硫酸銅溶液 14 3-2-5 置換反應 14 3-3 實驗儀器和設備 17 3-3-1 三滾研磨機 17 3-3-2 攪拌脫泡機 19 3-3-3 網板印刷和鋼板網印刷 20 3-3-4 快速燒結爐 22 3-3-5 恆溫循環水槽 22 Chapter 4 實驗與結果討論 23 4-1 不同固含量鋁膏的比較 23 4-1-1 外觀比較 23 4-1-2 電性比較 24 4-1-3 膜厚比較 25 4-2置換時間變化對不同固含量之鋁膏研究 26 4-2-1 結構分析 26  外觀分析 26  微結構分析 28  外觀分析 30  微結構分析 32 4-2-2 電性與膜厚分析分析 34 4-3 溫度變化對置換反應研究 36 4-3-1 結構分析 36 外觀分析 36 微結構分析 38 4-3-2 電性與膜厚分析分析 40 4-4 阿瑞尼斯方程式(Arrhenius Equation) 44 Chapter 5 結論 47 5-1 結論 47 參考文獻 48

    [1] 劉心怡, 洪雅慧, 何宗漢, 伍玉真, and 鄧希哲, "銀膠種類及厚度對構裝後晶片可靠度的影響," 工程科技與教育學刊, vol. 7, no. 4, pp. 546-559, 2010.
    [2] 鄧維豐, 劉榮昌, and 鍾明樺, "高導熱導電銀膠於 LED 應用的技術發展趨勢."4
    [3] Y.-m. Chen, "Improvement of microwave dielectric properties at diopside-based glass-ceramics doped with ceramics by low temperature co-fired copper electrode process," 2014.
    [4] S. Ishijima and T. Doi, "Aqueous aluminum paste composition," ed: Google Patents, 1979.
    [5] A. Benedeti, P. Sumodjo, K. Nobe, P. Cabot, and W. Proud, "Electrochemical studies of copper, copper-aluminium and copper-aluminium-silver alloys: impedance results in 0.5 M NaCl," Electrochimica Acta, vol. 40, no. 16, pp. 2657-2668, 1995.
    [6] 白萌, "用 “比率” 说话," 中国贵金属, no. 9, pp. 42-43, 2006.
    [7] 杨谨福, "非电镀 (化学镀) 涂层的新方法," 稀有金属, vol. 4, p. 017, 1983.
    [8] 黃瑞雄 and 顏溪成, "漫談電化學," ed: 科學發展, 2002.
    [9] I. Shirahata, S. Shiga, H. Hori, and T. Jinbo, "Multilayer printed wiring board and method for producing the same," ed: Google Patents, 1988.
    [10] I. Shirahata, S. Shiga, H. Hori, and T. Jinbo, "Method for producing a multilayer printed wiring board," ed: Google Patents, 1990.
    [11] A. Chynoweth and K. McKay, "Threshold energy for electron-hole pair-production by electrons in silicon," Physical Review, vol. 108, no. 1, p. 29, 1957.
    [12] Z. Yu, E. Kang, and K. Neoh, "Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers," Polymer, vol. 43, no. 15, pp. 4137-4146, 2002.
    [13] R. F. Borch, M. D. Bernstein, and H. D. Durst, "Cyanohydridoborate anion as a selective reducing agent," Journal of the American Chemical Society, vol. 93, no. 12, pp. 2897-2904, 1971.
    [14] J. Mitola, "Cognitive radio---an integrated agent architecture for software defined radio," 2000.
    [15] Y. Yamamura et al., "Characterization of a novel aquaretic agent, OPC‐31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist," British journal of pharmacology, vol. 105, no. 4, pp. 787-791, 1992.
    [16] B. E. Oeffinger and M. A. Wheatley, "Development and characterization of a nano-scale contrast agent," Ultrasonics, vol. 42, no. 1, pp. 343-347, 2004.
    [17] R. D. Chambers, Fluorine in organic chemistry. CRC Press, 2004.
    [18] C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes," Chemical reviews, vol. 105, no. 4, pp. 1025-1102, 2005.
    [19] M. Yamauchi, R. Abe, T. Tsukuda, K. Kato, and M. Takata, "Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2," Journal of the American Chemical Society, vol. 133, no. 5, pp. 1150-1152, 2011.
    [20] Y. Sun, B. Mayers, and Y. Xia, "Metal nanostructures with hollow interiors," Advanced Materials, vol. 15, no. 7‐8, pp. 641-646, 2003.
    [21] A. P. O'Mullane, S. J. Ippolito, A. M. Bond, and S. K. Bhargava, "A study of localised galvanic replacement of copper and silver films with gold using scanning electrochemical microscopy," Electrochemistry Communications, vol. 12, no. 5, pp. 611-615, 2010.
    [22] G. G. Botte and M. Muthuvel, "Electrochemical energy storage: Applications, processes, and trends," in Handbook of Industrial Chemistry and Biotechnology: Springer, 2012, pp. 1497-1539.
    [23] D. W. Rankin, "CRC handbook of chemistry and physics, edited by David R. Lide," ed: Taylor & Francis, 2009.
    [24] P. Li, "Biomimetic nano‐apatite coating capable of promoting bone ingrowth," Journal of Biomedical Materials Research Part A, vol. 66, no. 1, pp. 79-85, 2003.
    [25] A. J. Bard, R. Parsons, and J. Jordan, Standard potentials in aqueous solution. CRC press, 1985.
    [26] J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, and Y. Xia, "Optical properties of Pd− Ag and Pt− Ag nanoboxes synthesized via galvanic replacement reactions," Nano letters, vol. 5, no. 10, pp. 2058-2062, 2005.
    [27] W. M. Haynes, CRC handbook of chemistry and physics. CRC press, 2014.
    [28] P. Lequeu, K. Smith, and A. Daniélou, "Aluminum-copper-lithium alloy 2050 developed for medium to thick plate," Journal of materials engineering and performance, vol. 19, no. 6, pp. 841-847, 2010.
    [29] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (Version 45)," Progress in photovoltaics: research and applications, vol. 23, no. 1, pp. 1-9, 2015.
    [30] D. B. Williams and C. B. Carter, "The transmission electron microscope," in Transmission electron microscopy: Springer, 1996, pp. 3-17.
    [31] E. Glezer et al., "Three-dimensional optical storage inside transparent materials," Optics Letters, vol. 21, no. 24, pp. 2023-2025, 1996.
    [32] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2006.

    無法下載圖示 校內:2022-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE