簡易檢索 / 詳目顯示

研究生: 陳佳勳
Chen, Chia-Hsun
論文名稱: 氧化鋅薄膜及奈米柱結構之光電元件
Optoelectronic devices of ZnO thin-film structure and nanostructure
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 87
中文關鍵詞: 光電化學氧化法光偵測器低溫氣相冷凝系統奈米柱陣列
外文關鍵詞: Photoelectrochemical oxidation method, photodetectors, vapor cooling condensation system, nanorod array
相關次數: 點閱:160下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文採用低溫氣相冷凝系統製備氧化鋅n-i-p光偵測器。藉由將氧化鉭摻入氧化鋅之化合物薄膜當光偵測器之吸收層可以有效降低元件之雜訊均方電流而提升氧化鋅n-i-p光偵測器之偵測度。此外,利用直徑兩百奈米之氧化鋁多孔洞模板製作奈米柱結構應用於氧化鋅n-i-p奈米柱陣列光偵測器更可大幅增加光偵測器的偵測表面積以提升偵測特性。雖然奈米結構具有大幅增加光偵測器的偵測面積的優勢,但由於氧化鋅奈米柱陣列表面所存在的大量懸鍵與界面態位,將同時造成較大的漏電流及高的雜訊均方電流。為降低存在於氧化鋅奈米柱表面之界面態位及缺陷,本研究利用光電化學氧化法直接對氧化鋅表面的懸鍵與界面態位進行護佈。
    本論文研究氧化鉭摻入氧化鋅合成的化合物吸收薄膜及光電化學氧化法製作成的異質結構氧化鋅n-i-p (n-ZnO:In/i-Zn3Ta2O5/p-ZnO:LiNO3)光偵測器之偵測及雜訊特性,為了比較氧化鉭摻入氧化鋅合成的化合物薄膜及光電化學氧化法之特性提升效果,將製作同質結構之氧化鋅n-i-p (n-ZnO:In/i-ZnO/p-ZnO:LiNO3)光偵測器及未使用光電化學氧化法之氧化鋅n-i-p (n-ZnO:In/i-Zn3Ta2O5/p-ZnO:LiNO3)光偵測器。相較於其它氧化鋅光偵測器,使用光電化學氧化法之氧化鋅n-i-p (n-ZnO:In/i-Zn3Ta2O5/p-ZnO:LiNO3)光偵測器在逆偏壓5伏的條件下,動態電阻值為6.02×1012 Ω,光響應度為0.11 A/W及偵測度為6.66×1013 cmHz1/2W−1均優於其它氧化鋅光偵測器。由實驗結果發現,氧化鋅n-i-p光偵測器可以藉由使用氧化鉭摻入氧化鋅合成的化合物有較高的薄膜品質且具有高電阻值作為吸收薄膜及利用光電化學氧化法來製備元件以提升其動態電阻、光響應度及雜訊特性。
    近幾年投入了大量的研究於奈米結構光偵測器。相較於傳統的氧化鋅n-i-p光偵測器,氧化鋅奈米柱擁有較大的表面積-體積比及其存在於氧化鋅奈米柱表面大量的懸鍵與界面態位,使得氧化鋅n-i-p奈米柱陣列光偵測器擁有較大的效率-增益值乘積。氧化鋅n-i-p (n-ZnO:In nanorod/i-ZnO nanorod/p-GaN)奈米柱陣列光偵測器之光響應度在逆偏壓5伏的條件下為3.0×103 A/W及其對應效率-增益值乘積為1.1×104此數值較氧化鋅n-i-p光偵測器大。使用光電化學氧化法直接護佈氧化鋅n-i-p奈米柱陣列表面,可以有效提升氧化鋅n-i-p奈米柱陣列光偵測器之特性。其光偵測器之光響應度在逆偏壓5伏為4.60×102 A/W,其偵測度為1.43×1015 cmHz1/2W−1。

    In this dissertation, the ZnO-based n-i-p photodetectors were successfully fabricated using the vapor cooling condensation system. To improve performance of the ZnO-based n-i-p photodetectors, the compound of Zn3Ta2O5 deposited as the absorption layer was utilized to decrease mean square noise current and improve the specific detectivity of the ZnO-based n-i-p photodetectors due to its great film quality. To increase the sensing area, the anodic alumina membrane (AAM) plate with a pore diameter of 200 nm was used as the templet to grow nanostructured to increase surface-to-volume ratio of the ZnO-based n-i-p nanorod array photodetectors. However, although the ZnO-based n-i-p nanorod array photodetectors possessed the large surface-to-volume ratio, a large leakage current and a high mean square noise current were arose at the same time, which were also related with the abundant surface states resided on the ZnO nanorods. To reduce the surface states and the native defects resided on the sidewall surface of the ZnO nanorod, the photoelectrochemical (PEC) oxidation method was used to directly passivate the sidewall surface of the ZnO-based n-i-p nanorod array photodetectors.
    To investigate sensing and noise performances of the heterostructured ZnO-based n-i-p (n-ZnO:In/i-Zn3Ta2O5/p-ZnO:LiNO3) photodetectors with PEC oxidation passivation, both the homostructured ZnO-based n-i-p (n-ZnO:In/i-ZnO/p-ZnO:LiNO3) photodetectors and heterostructured ZnO-based n-i-p (n-ZnO:In/i-Zn3Ta2O5/p-ZnO:LiNO3) photodetectors without PEC oxidation passivation were fabricated on sapphire substrates to compare. Among the three ZnO-based n-i-p photodetecotors, the passivated heterostructured ZnO-based n-i-p (n-ZnO:In/i-Zn3Ta2O5/p-ZnO:LiNO3) photodetectors showed the high dynamic resistance of 6.02×1012 Ω, the peak photoresponsivity of 0.11 A/W, and the high specific detectivity of 6.66×1013 cmHz1/2W−1 at reverse bias voltage of −5 V. The dynamic resistance, the photoresponsivity and the noise performances of the unpassivated and passivated ZnO-based n-i-p photodetectors were all improved by the function of the high quality Zn3Ta2O5 absorption layer and the PEC oxidation method.
    The nano-structured photodetectors have been receiving more attention recently. Compared to the conventional ZnO-based n-i-p photodetectors, the ZnO-based n-i-p (n-ZnO:In nanorod/i-ZnO nanorod/p-GaN) nanorod array photodetectors exhibited an important advantage of high efficiency-gain product. The high efficiency-gain (E.G) product was caused by the large surface-to-volume ratio and the surface band bending induced by the presence of deep level trap states resided on the sidewall surface. The peak photoresponsivity of the ZnO-based n-i-p (n-ZnO:In nanorod/i-ZnO nanorod/p-GaN) nanorod array photodetectors operated at reverse bias voltage of −5 V was about 3.0×103 A/W, which was larger than the ZnO-based n-i-p photodetectors. The corresponding efficiency-gain (E.G) product was 1.1×104.
    Finally, the PEC oxidation method was used to directly passivate the sidewall surface of the ZnO-based n-i-p (n-ZnO:In nanorod/i-ZnO nanorod/p-GaN) nanorod array photodetectors. The passivated ZnO-based n-i-p (n-ZnO:In nanorod/i-ZnO nanorod/p-GaN) nanorod array photodetectors showed the high photoresponsivity of 4.60×102 A/W and the high specific detectivity of 1.43×1015 cmHz1/2W−1 at reverse bias voltage of −5 V.

    Abstract (in Chinese) IV Abstract (in English) VII Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Overview of this dissertation 3 References 5 Chapter 2 Theory 8 2.1 The zinc oxide (ZnO)-based semiconductor 8 2.2 Sensing and noise mechanism of the photodetectors 9 2.2.1 Photoresponsivity and efficiency gain product theory 9 2.2.2 Noise theory 12 2.3 The photoelectrochemical (PEC) oxidation method 17 References 19 Chapter 3 Device Fabrication 45 3.1 The vapor cooling condensation system 45 3.2 Device Fabrication 45 3.2.1 The fabrication process of n-ZnO:In/i-ZnO/p-ZnO:LiNO3 and the n-ZnO:In/i-Zn3Ta2O5/p-ZnO:LiNO3 photodetectors. 45 3.2.2 The PEC passivation of n-ZnO:In/i-Zn3Ta2O5/p-ZnO:LiNO3 photodetectors 48 3.2.3 The fabrication process of n-i-p heterostructured nanorod array photodetectors 48 3.2.4 The PEC passivation of n-i-p heterostructured nanorod array photodetectors 50 3.3 Measurement system of photodetecotors 51 References 52 Chapter 4 Experimental Results and Discussions 57 4.1 Sensing characterization of ZnO-based n-i-p photodetectors 57 4.2 Noise characterization of ZnO-based n-i-p photodetectors 58 4.2.1 Dynamic resistance 58 4.2.2 Noise power density and photoresponsivity as function of the applied bias voltage 59 4.3 Sensing characterization of ZnO-based n-i-p nanorod array photodetectors 62 4.4 Noise characterization of ZnO-based n-i-p nanorod array photodetectors 64 4.4.1 Current-voltage 64 4.4.2 Admittance 65 4.4.3 Equivalent circuit 67 4.4.4 Noise power spectral density 69 4.4.5 Noise equivalent power (NEP) and specific detectivity (D*) 71 References 73 Chapter 5 Conclusion and future work 85

    Chapter 1
    [1] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., 98, 041301 (2005).
    [2] C. T. Lee, “Fabrication methods and luminescent properties of ZnO materials for light-emitting diodes,” Materials, 3, 2218 (2010).
    [3] L. W. Lai and C. T. Lee, “Investigation of optical and electrical properties of ZnO thin films,” Mater. Chemi. and Phys., 110, 393 (2008)
    [4] L. W. Lai, C, H, Liu, C. T. Lee, L. R. Lou, W. Y. Yeh, and M. T. Chu, “Investigation of silicon nanoclusters embedded in ZnO matrices deposited by cosputtering system,” J. Mater. Res., 23, 2506 (2008).
    [5] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater., 14, 158 (2002).
    [6] Y. Jin, J. Wang, B. Sun, James C. Blakesley, and N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett, 8, 1649 (2008).
    [7] Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang, and S. T. Lee, “ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector,” Appl. Phys. Lett., 96, 053102 (2010).
    [8] B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance schottky junction ultraviolet photodetectors,” Small. 9, 2872 (2013).
    [9] M. Y. Chuang, H. C. Yu, Y. K. Su, C. H. Hsiao, T. H. Kao, C. S. Huang, Y. C. Huang, J. J. Tsai, and S. L. Wu, “Density-controlled and seedless growth of laterally bridged ZnO nanorod for UV photodetector applications,” Sensors and Actuators B, 202, 810 (2014).
    [10] V. Q. Dang, T. Q. Trung, D.I. Kim, Le T. Duy, B. U. Hwang, D. W. Lee, B. Y. Kim, L. D. Toan, and N. E. Lee, “Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector,” Small. 11, 3054 (2015).
    [11] S. Sarkar and D. Basak, “Defect controlled ultra high ultraviolet photocurrent gain in Cu-doped ZnO nanorod arrays: De-trapping yield,” Appl. Phys. Lett., 103, 041112 (2013).
    [12] J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett., 94, 191103 (2009).
    [13] Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett., 94, 023110 (2009).
    [14] S. Song, W. K. Hong, S. S. Kwon, and T. Lee, “Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments,” Appl. Phys. Lett., 92, 263109 (2008).
    [15] J. Maeng, G. Jo, S. S. Kwon, S. Song, J. Seo, S. J. Kang, D. Y. Kim, and T. Lee, “Effect of gate bias sweep rate on the electronic properties of ZnO nanowire field-effect transistors under different environments,” Appl. Phys. Lett., 92, 233120 (2008).
    [16] W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, M. E. Welland, and T. Lee, “Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors,” Nano Lett, 8, 950 (2008).
    [17] T. P. Chen, K. H. Lee, S. P. Chang, S. J. Chang, and P. C. Chang, “Effect of surface modification by self-assembled monolayer on the ZnO film ultraviolet sensor,” Appl. Phys. Lett., 103, 022101 (2013).
    Chapter 2
    [1] Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys., 88, 201 (2000).
    [2] K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong, and S. J. Park, “Fabrication of ZnO quantum dots embedded in an amorphous oxide layer,” Appl. Phys. Lett., 84, 3810 (2004).
    [3] Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, “Electronic transport through individual ZnO nanowires,” Appl. Phys. Lett., 84, 4556 (2004).
    [4] J. Čížek, J. Valenta, P. Hruška, O. Melikhova, I. Procházka, M. Novotný, and J. Bulířc, “Origin of green luminescence in hydrothermally grown ZnO single crystals,” Appl. Phys. Lett., 106, 251902 (2015).
    [5] R. Yukawa, S. Yamamoto, K. Ozawa, M. Emori, M. Ogawa, Sh. Yamamoto, K. Fujikawa, R. Hobara, S. Kitagawa , H. Daimon, H. Sakama, and I. Matsuda, “Electron-hole recombination on ZnO(0001) single-crystal surface studied by timeresolved soft X-ray photoelectron spectroscopy,” Appl. Phys. Lett., 105, 151602 (2014).
    [6] T. H. Kao, J. Y. Chen, C. H. Chiu, C. W. Huang, and W. W. Wu, “Opto-electrical properties of Sb-doped p-type ZnO nanowires,” Appl. Phys. Lett., 104, 111909 (2014).
    [7] N. Roy, A. Chowdhury, and A. Roy, “Observation of negative differential resistance and electrical bi-stability in chemically synthesized ZnO nanorods,” J. Appl. Phys., 115, 223502 (2014).
    [8] B. I. MacDonald, E. Della Gaspera, S. E. Watkins, P. Mulvaney, and J. J. Jasieniak, “Enhanced photovoltaic performance of nanocrystalline CdTe/ZnO solar cells using solgel ZnO and positive bias treatment,” J. Appl. Phys., 115, 184501 (2014).
    [9] H. Sezen, H. Shang, F. Bebensee, C. Yang, M. Buchholz, A. Nefedov, S. Heissler, C. Carbogno, M. Scheffler, P. Rinke, and C. Wol, “Evidence for photogenerated intermediate hole polarons in ZnO,” Nat. Commun., 22, 1 (2015).
    [10] N. H. A. Hardana, A. Jalar, M.A. A. Hamid, L. K. Keng, N. M. Ahmedc, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sensors and Actuators A, 207, 61 (2014).
    [11] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., 98, 041301 (2005).
    [12] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett., 78, 407 (2001).
    [13] H. W. Ryu, B. S. Park, S. A. Akbar, W. S. Lee, K. J. Hong, Y. J. Seo, D. C. Shin, J. S. Park, and G. P. Choi, “ZnO sol–gel derived porous film for CO gas sensing,” Sensors and Actuators B, 96, 717 (2003).
    [14] J. S. Huang and C. F. Lin, “Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing,” Appl. Phys. Lett., 103, 014304 (2008).
    [15] P. Bhattacharyya, P.K. Basu, H. Saha, and S. Basu, “Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method,” Sensors and Actuators B, 124, 62 (2007)
    [16] S. E. Ahn, H. J. Ji, K. Kim, G. T. Kim, C. H. Bae, S. M. Park, Y. K. Kim, and J. S. Ha, “Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire,” Appl. Phys. Lett., 90, 153106 (2007).
    [17] S. Y. Li, P. Lin, C. Y. Lee, and T. Y. Tseng, “Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process,” Appl. Phys. Lett., 95, 3711 (2004).
    [18] S. Hoffmann, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gösele, and C. Ballif, “Measurement of the bending strength of vapor−liquid−solid grown silicon nanowirese,” Nano Lett, 6, 622 (2006).
    [19] Y. Zhu, F. Xu, Q. Qin, W. Y. Fung, and W. Lu, “Mechanical properties of vapor−liquid−solid synthesized silicon nanowires,” Nano Lett, 9, 3934 (2009).
    [20] X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett, 4, 423 (2004).
    [21] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., 80, 4232 (2002).
    [22] J. Hu and R. G. Gordon, “Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition,” J. Appl. Phys., 71, 880 (1992).
    [23] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011̄2) sapphire by metalorganic chemical vapor deposition,” J. Appl. Phys., 85, 2595 (1999).
    [24] H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir, 20, 5659 (2004).
    [25] B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu, and D. Wang, “Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition,” Nano Lett, 7, 323 (2007).
    [26] S. W. Kim, S. Fujita, and S. Fujita, “ZnO nanowires with high aspect ratios grown by metalorganic chemical vapor deposition using gold nanoparticles,” Appl. Phys. Lett., 86, 153119 (2005).
    [27] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique,” Appl. Phys. Lett., 91, 231113 (2007).
    [28] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., 108, 073119 (2010).
    [29] P. C. Wu, H. Y. Lee, and C. T. Lee, “Enhanced light emission of double heterostructured MgZnO/ZnO/MgZnO in ultraviolet blind light-emitting diodes deposited by vapor cooling condensation system,” Appl. Phys. Lett., 100, 131116, (2012).
    [30] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-Based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., 25, 348 (2013).
    [31] C. H. Chen and C. T. Lee, “Enhancing the performance of ZnO nanorod/p-GaN heterostructured photodetectors using the photoelectrochemical oxidation passivation method,” IEEE Trans. Nanotechnol., 12, 578 (2013)
    [32] Z. Zheng, L. Gan, H. Li, Y. Ma, Y. Bando, D. Golberg and T. Zhai, “A fully transparent and flexible ultraviolet–visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays,” Adv. Funct. Mater., 27, 1 (2015).
    [33] N. Nasiri, R. Bo, F. Wang, L. Fu , and A. Tricoli, “Ultraporous electron-depleted ZnO nanoparticle networks for highly sensitive portable visible-blind UV photodetectors,” Adv. Mater., 27, 4336 (2015).
    [34] S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, “Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array,” ACS Nano, 9, 6419 (2015).
    [35] G. Tabares, A. Hierro, M. L. Ponce, E. Muñoz, B. Vinter, and J. M. Chauveau, “Light polarization sensitive photodetectors with m- and r-plane homoepitaxial ZnO/ZnMgO quantum wells,” Appl. Phys. Lett., 106, 061114 (2015).
    [36] H. Arora, P. E. Malinowski, A. Chasin, D. Cheyns, S. Steudel, S. Schols, and P. Heremans, “Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors,” Appl. Phys. Lett., 106, 143301 (2015).
    [37] K. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors, 10, 8604 (2010).
    [38] J. C. D. Faria, A. J. Campbell, and M. A. McLachlan, “ZnO nanorod arrays as electron injection layers for efficient organic light emitting diodes,” Adv. Funct. Mater., 25, 4657 (2015).
    [39] Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nature Photon., 9, 259 (2015).
    [40] B. H. Kim, M. S. Onses, J. B. Lim, S. Nam, N. Oh, H. Kim, K. J. Yu, J. W. Lee, J. H. Kim, S. K. Kang, C. H. Lee, J. Lee, J. H. Shin, N. H. Kim, C. Leal, M. Shim, and J. A. Rogers, “High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes,” Nano Lett., 15, 969 (2015).
    [41] X. Ren, X. Zhang, N. Liu, L. Wen, L. Ding, Z. Ma, J. Su, L. Li, J. Han, and Y. Gao, “White light-emitting diode from Sb-doped p-ZnO nanowire arrays/n-GaN film,” Adv. Funct. Mater., 25, 2182 (2015).
    [42] J. Kwak, J. Lim, M. Park, S. Lee, K. Char, and C. Lee, “High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots,” Nano Lett., 15, 3793 (2015).
    [43] R. Ahmada, N. Tripathy, N. K. Jang, G. Khang, and Y. B. Hahn, “Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface,” Sensors and Actuators B, 206, 146 (2015).
    [44] J. Politi, I. Rea, P. Dardano, L. D. Stefano, and M. Gioffrè, “Versatile synthesis of ZnO nanowires for quantitative optical sensing of molecular biorecognition,” Sensors and Actuators B, 220, 705 (2015).
    [45] J. Li, Y. Lin, J. Lu, C. Xu, Y. Wang, Z. Shi, and J. Dai, “Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance,” ACS Nano, 9, 6794 (2015).
    [46] N. Gao, W. Zhou, X. Jiang, G. Hong, T. M. Fu, and C. M. Lieber, “General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors,” Nano Lett., 15, 2143 (2015).
    [47] M. D. Ramos, B. D. Durán, J. M. Escolano, J. Olivares, M. Clement, T. Mirea, and E. Iborra, “Effects of biologically compatible buffers on the electrical response of gravimetric sensors operating at GHz frequencies,” Sensors and Actuators B, 222, 688 (2016).
    [48] R. Yu, X. Wang, W. Wu, C. Pan, Y. Bando, N. Fukata, Y. Hu, W. Peng, Y. Ding, and Z. L. Wang, “Temperature dependence of the piezophototronic effect in CdS nanowire,” Adv. Funct. Mater., 25, 5277 (2015).
    [49] J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent On/Off ratios,” Small, 11, 936 (2015).
    [50] C. H. Chen and C. T. Lee, “Solar blind ultraviolet photodetectors with high dynamic resistance using Zn3Ta2O5 layer,” IEEE Photon. Technol. Lett., 27, 1817 (2015).
    [51] D. H. Kang, M. S. Kim, J. Shim, J. Jeon, H. Y. Park, W. S. Jung, H. Y. Yu, C. H. Pang, S. Lee, and J. H. Park, “High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping,” Adv. Funct. Mater., 25, 4219 (2015).
    [52] E. Zhang, Y. Jin, X. Yuan, W. Wang, C. Zhang, L. Tang, S. Liu, P. Zhou, W. Hu, and F, Xiu, “ReS2-based field-effect transistors and photodetectors,” Adv. Funct. Mater., 25, 4076 (2015).
    [53] J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8–13 μm InAsSb heterojunction photodiode operating at near room temperature,” Appl. Phys. Lett., 67, 2645 (1995).
    [54] D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett., 76, 403 (2000).
    [55] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., 74, 762 (1999).
    [56] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett., 71, 2334 (1997).
    [57] F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nature Photon., 7, 290 (2013).
    [58] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science, 325, 1665 (2009).
    [59] W. A. Beck, “Photoconductive gain and generation‐recombination noise in multiple‐quantum‐well infrared detectors,” Appl. Phys. Lett., 63, 3589 (1993).
    [60] B. F. Levine, A. Zussman, S. D. Gunapal, M. T. Asom, J. M. Kuo, and W. S. Hobson, “Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors,” J. Appl. Phys., 72, 4429 (1992).
    [61] E. C. Camus, L. Fu, J. L. Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys., 104, 053113 (2008).
    [62] E. C. Camus, J. L. Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express, 15, 7047 (2007).
    [63] T. P. Osedach, A. Iacchetti, R. R. Lunt, T. L. Andrew, P. R. Brown, G. M. Akselrod, and V. Bulović, “Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films,” Appl. Phys. Lett., 101, 113303 (2012).
    [64] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. M. Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nature Nanotech., 9, 814 (2014).
    [65] L. Viti, D. Coquillat, D. Ercolani, L. Sorba, W. Knap, and M. S. Vitiello, “Nanowire Terahertz detectors with a resonant four-leaf-clover-shaped antenna,” Opt. Express, 22, 8996 (2014).
    [66] N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Appl. Phys. Lett., 96, 231107 (2010).
    [67] S. R. Andrews and B. A. Miller, “Experimental and theoretical studies of the performance of quantum‐well infrared photodetectors,” J. Appl. Phys., 70, 993 (1991).
    [68] E. K. Bolton, G. S. Sayler, D. E. Nivens, J. M. Rochelle, S. Ripp, and M. L. Simpson, “Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit,” Sensors and Actuators B, 85, 179 (2002).
    [69] H. Wei, Y. Fang, Y. Yuan, L. Shen, and J. Huang, “Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors,” Adv. Mater., 27, 4975 (2015).
    [70] B. M. Nguyen, S. Bogdanov, S. A. Pour, and M. Razeghi, “Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection,” Appl. Phys. Lett., 95, 183502 (2009).
    [71] X. S. Nguyen, K. Lin, Z. Zhang, B. McSkimming, A. R. Arehart, J. S. Speck, S. A. Ringel, E. A. Fitzgerald, and S. J. Chu, “Correlation of a generation-recombination center with a deep level trap in GaN,” Appl. Phys. Lett., 106, 102101 (2015).
    [72] T. K. Djidjou, Y. Chen, T. Basel, J. Shinar, and A. Rogachev, “Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes,” J. Appl. Phys., 117, 115501 (2015).
    [73] V. P. Kunets, T. Al. Morgan, Y. I. Mazur, V. G. Dorogan, P. M. Lytvyn, M. E. Ware, D. Guzun, J. L. Shultz, and G. J. Salamo, “Deep traps in GaAs/InGaAs quantum wells and quantum dots, studied by noise spectroscopy,” J. Appl. Phys., 104, 103709 (2008).
    [74] J. Hubmayr, J. Beall, D. Becker, H. M. Cho, M. Devlin, B. Dober, C. Groppi, G. C. Hilton, K. D. Irwin, D. Li, P. Mauskopf, D. P. Pappas, J. Van Lanen, M. R. Vissers, Y. Wang, L. F. Wei, and J. Gao, “Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors,” Appl. Phys. Lett., 106, 073505 (2015).
    [75] A. D. Amicoa, C. D. Natale, and P. M. Sarro, “Ingredients for sensors science,” Sensors and Actuators B, 207, 1060 (2015).
    [76] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., 44, 479 (1981).
    [77] Heng Liu, Emmanuel Lhuillier, and Philippe Guyot-Sionnest, “1/f noise in semiconductor and metal nanocrystal solids,” J. Appl. Phys., 115, 154309 (2014).
    [78] J. Renteria, R. Samnakay, S. L. Rumyantsev, C. Jiang, P. Goli, M. S. Shur, and A. A. Balandin, “Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the channel and contacts,” Appl. Phys. Lett., 104, 153104 (2014).
    [79] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. Electron Devices, 37, 654 (1990).
    [80] M. A. Stolyarov, G. Liu, S. L. Rumyantsev, M. Shur, and A. A. Balandin, “Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field effect transistors,” Appl. Phys. Lett., 107, 023106 (2015).
    [81] K. Bedner, V. A. Guzenko, A. Tarasov, M. Wipf, R. L. Stoop, S. Rigante, J. Brunner, W. Fu, C. David, M. Calame, J. Gobrecht, and C. Schönenberger, “Investigation of the dominant 1/f noise source in silicon nanowire sensors,” Sensors and Actuators B, 191, 270 (2014).
    [82] M. Kayyalha and Y. P. Chen, “Observation of reduced 1/f noise in graphene field effect transistors on boron nitride substrates,” Appl. Phys. Lett., 107, 113101 (2015).
    [83] Y. Lai, H. Li, D. K. Kim, B. T. Diroll, C. B. Murray, and C. R. Kagan, “Low-Frequency (1/f) Noise in Nanocrystal Field-Effect Transistors,” ACS Nano, 8, 9664 (2014).
    [84] H. J. Kwon, H. Kang, J. Jang, S. Kim, and C. P. Grigoropoulos, “Analysis of flicker noise in two-dimensional multilayer MoS2 transistors,” Appl. Phys. Lett., 104, 083110 (2014).
    [85] A. Eklund, S. Bonetti, S. R. Sani, S. M. Mohseni, J. Persson, S. Chung, S. A. H. Banuazizi, E. Iacocca, M. Östling, J. Åkerman, and B. G. Malm, “Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field,” Appl. Phys. Lett., 104, 092405 (2014).
    [86] P. Y. Su, R. W. Chuang, C. H. Chen, and T. H. Kao, “Low-frequency noise properties of metal–organic–metal ultraviolet sensors,” Jpn. J. Appl. Phys., 54, 04DK12-1 (2015).
    [87] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-Based Schottky Barrier Photodetectors With a 12-Pair MgxNy–GaN Buffer Layer,” IEEE J. Quantum Electron. 44, 916 (2008).
    [88] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and J. C. Campbell, “Low-Noise Back-Illuminated AlxGa1-xN-Based p-i-n Solar-Blind Ultraviolet Photodetectors,” IEEE J. Quantum Electron. 37, 538 (2001).
    [89] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, L. W. Ji, Y. J. Hsu, and S. L. Wu, “Low-frequency noise characteristics of ZnO nanorods schottky barrier photodetectors,” IEEE Sensors J., 13, 2115 (2013).
    [90] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett., 70, 2277 (1997).
    [91] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina1, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature, 442, 180 (2006).
    [92] A. N. Cleland, D. Esteve, C. Urbina, and M. H. Devoret, “Very low noise photodetector based on the single electron transistor,” Appl. Phys. Lett., 61, 2820 (1992).
    [93] A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman, W. Słysz, A. Pearlman, A. Verevkin, and Roman Sobolewski, “Quantum efficiency and noise equivalent Power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared,” IEEE Trans. Appl. Supercond., 15, 571 (2005).
    [94] J. R. Manders, T. H. Lai, Y. An, W. Xu, J. Lee, D. Y. Kim, G. Bosman, and F. So, “Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors,” Adv. Funct. Mater., 24, 7205 (2014).
    [95] B. N. Pal, I. Robe, A. Mohite, R. Laocharoensuk, D. J. Werder, and V. I. Klimov, “High-sensitivity p–n junction photodiodes based on PbS nanocrystal quantum dots,” Adv. Funct. Mater., 22, 1741 (2012).
    [96] Y. An, H. Rao, G. Bosman, and A. Ural, “Characterization of carbon nanotube film-silicon Schottky barrier photodetectors,” J. Vac. Sci. Technol. B, 30, 021805 (2012).
    [97] Y. Fang and J. Huang, “Resolving weak light of Sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction,” Adv. Funct. Mater., 27, 2804 (2015).
    [98] X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity,” Nature Commun., 5, 4007 (2013).
    [99] L. Dou, Y. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nature Commun., 5, 5404 (2014).
    [100] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science , 325, 1665 (2009).
    [101] A. S. Dahiya, C. Opoku, C. Oshman, G. P. Vittrant, F. Cayrel, L. P. T. H. Hue, D. Alquier, and N. Camara, “Zinc oxide sheet field-effect transistors,” Appl. Phys. Lett., 107, 033105 (2015).
    [102] S. Song, W. K. Hong, S. S. Kwon, and T. Lee, “Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments,” Appl. Phys. Lett., 92, 263109 (2008).
    [103] X. Liua, P. Lina, X. Yana, Z. Kanga, Y. Zhaoa, Y. Lei, C. Li, H. Du, and Y. Zhang, “Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid,” Sensors and Actuators B, 176, 22 (2013).
    [104] W. K. Hong, B. J. Kim, T. W. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E. A. Stach, and T. Lee, “Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloid Surf. A, 313, 378 (2008).
    [105] T. P. Chen, K. H. Lee, S. P. Chang, S. J. Chang, and P. C. Chang, “Effect of surface modification by self-assembled monolayer on the ZnO film ultraviolet sensor,” Appl. Phys. Lett., 103, 022101 (2013).
    [106] C. T. Lee, Y. S. Chiu, “Photoelectrochemical passivated ZnO-based nanorod structured glucose biosensors using gate-recessed AlGaN/GaN ion-sensitive field-effect-transistors,” Sensors and Actuators B, 210, 756 (2015).
    [107] H. Y. Lee, C. T. Lee, and J. T. Yan, “Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes,” Appl. Phys. Lett., 97, 111111 (2010).
    [108] Y. S. Chiu and C. T. Lee, “pH sensor investigation of various-length photoelectrochemical passivated ZnO nanorod arrays,” J. Electrochem. Soci., 158, J282 (2011).
    [109] C. H. Chen and C. T. Lee, “Solar blind ultraviolet photodetectors with high dynamic resistance using Zn3Ta2O5 layer,” IEEE Photon. Technol. Lett., 27, 1817 (2015).
    [110] C. H. Chen and C. T. Lee, “Enhancing the performance of ZnO nanorod/p-GaN heterostructured photodetectors using the photoelectrochemical oxidation passivation method,” IEEE Trans. Nanotechnol., 12, 578 (2010).
    [111] Y. S. Chiu, C. Y. Tseng, and C. T. Lee, “Nanostructured EGFET pH sensors with surface-passivated ZnO thin-film and nanorod array,” IEEE Sensors J., 12, 578 (2012)
    Chapter 3
    [1] R. W. Chung, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique”, Appl. Phys. Lett., 91, 231113 (2007).
    [2] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique”, J. Appl. Phys., 108, 073119 (2010).
    [3] C. H. Chen and C. T. Lee, “Solar blind ultraviolet photodetectors with high dynamic resistance using Zn3Ta2O5 layer”, IEEE Photon. Technol. Lett., 27, 1817 (2015).
    [4] C. H. Chen and C. T. Lee, “Enhancing the performance of ZnO nanorod/p-GaN heterostructured photodetectors using the photoelectrochemical oxidation passivation method,” IEEE Trans. Nanotechnol., 12, 578 (2013).
    [5] H. Y. Lee, C. T. Lee, and J. T. Yan, “Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes,” Appl. Phys. Lett., 97, 111111 (2010).
    Chapter 4
    [1] C. H. Chen and C. T. Lee, “Solar blind ultraviolet photodetectors with high dynamic resistance using Zn3Ta2O5 layer,” IEEE Photon. Technol. Lett., 27, 1817 (2015).
    [2] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett, 7, 1003 (2007).
    [3] Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett., vol. 94, 023110 (2009).
    [4] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-Based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., 25, 348 (2013).
    [5] T. S. Lin, C. H. Chen, and C. T. Lee, “Physical internal gain mechanisms of ZnO-based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., 27, 759 (2015).
    [6] V. V. Kuryatkov, H. Temkin, J. C. Campbell, and R. D. Dupuis, “Low-noise photodetectors based on heterojunctions of AlGaN-GaN,” Appl. Phys. Lett., 78, 3340 (2001).

    下載圖示 校內:2021-01-28公開
    校外:2021-01-28公開
    QR CODE