| 研究生: |
陳乃勤 Chen, Nai-Chin |
|---|---|
| 論文名稱: |
在平行微流結構中應用液體介電泳效應和負介電泳效應進行單細胞捕捉和阻抗量測 Single-Cell Trapping and Impedance Measurement Utilizing Liquid Dielectrophoresis and Negative Dielectrophoresis in a Parallel-Plate Microfluidic Device |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 介電泳 、液體介電泳 |
| 外文關鍵詞: | dielectrophoresis (DEP), liquid dielectrophoresis (LDEP) |
| 相關次數: | 點閱:88 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在最近十年,微機電技術比傳統技術來的越來越有效率。介電泳是一種以電性操作微米顆粒且容易與其他檢測技術相結合的方法。自一九五一年起,介電泳現象定義為極化粒子在高電場下移動的情形,此外,負介電泳最適合用來捕捉溶液中的微粒,與介電泳相比,液體介電泳可視為介電泳中的特例,液體介電泳為液體朝非均勻電場區域中較高電場流動的現象,其中也討論了介電泳現象與液體介電泳現象的實驗與理論。本研究利用液體介電泳方式,驅動去離子水液珠,其中液珠包含已經定位好的十五微米的塑膠顆粒,捕捉單一粒子和阻抗量測。本研究亦完成了一個在平行板電極上同時應用介電泳與液體介電泳的方法。
In recent ten years, Micro-Electro-Mechanical Systems (MEMS) technology is established and is more efficient rather than the conventional ones. dielectrophoresis (DEP) is one of the electrical methods to manipulate μ-particles, and can be easily combined with subsequent analyses based on electric fields. In 1951, DEP was first defined as polarizable particles moving into regions of higher electric field intensity. Besides, negative DEP is practicable in trapping particles suspended in the liquid. In contrast to DEP, liquid DEP (LDEP) is a particular case of DEP. The phenomenology of liquid DEP is that the dielectric liquid tends to flow towards to the regions of high electric field intensity under a non-uniform electric field. Additionally, the relationship between DEP and LDEP is discussed experimentally and theoretically. Furthermore, this research presents a method to move droplet of deionized water by LDEP. Finally, the water droplet containing 15μm polystyrene beads at the desired location from the continuous flow driven by LDEP, and capture a single-particle, and then measurement of impedance . This work presents a practical method of DEP and LDEP based on parallel electrodes for single particle trapping application.
[1] F. Mugele and J. C. Baret, “ Electrowetting: From basics to applications,” J. Phys. Condens. Matter, vol. 17, no. 28, pp. 705–774, Jul. 2005.
[2] J. H. Lee, H. J. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling,” Sens. Actuators A, Phys., vol. 95, no. 2, pp. 259–268, Jan. 2002.
[3] B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J., E., vol. 3, no. 2, pp. 159–163, Oct. 2000.
[4] J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett., vol. 86, no. 15, p. 151 121, Apr. 2005.
[5] Y. Li, A. Kazantzis, L. I. Haworth, K. Muir, A. W. S. Ross, J. G. Terry, J. T. M. Stevenson, A. M. Gundlach, A. S. Bunting, and A. J. Walton, “Building EWOD microfluidic array technology on top of foundry CMOS,” in Proc. IET Semin. MEMS, Sensors Actuators, pp. 23–30, Apr. 2006.
[6] H.Moon,S. Cho,R. Garrrell, and C.J.Kim,“Low voltage electrowettingon-dielectric,” J. Appl. Phys., vol. 92, no. 7, pp. 4080–4087, Oct. 2002.
[7] G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys., vol. 5, p. 494, 1875.
[8] S. K. Cho, H. Moon, and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., vol. 12, no. 1, pp. 70–80, Feb. 2003.
[9] Pohl, Herbert A., and Pollock, Kent, “Electrode geometries for various dielectrophoretic force laws,” Journal of Electrostatics, vol. 5, pp. 337-342, 1978.
[10] J. Yang, Y. Huang, X. B.Wang, F. F. Becker, and P. R. C. Gascoyne, “Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation,” Biophysical Journal, vol. 78, no. 5, pp. 2680-2689, 2000.
[11] T. B. Jones, Electromechanics of Particles. Cambridge, U.K.: Cambridge Univ. Press, 1995.
[12] M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis, vol. 23, pp. 2569–2582,2002.
[13] J. Nieuwenhuis, A. Jachimowicz, P. Svasek, and M. Vellekoop, “Optimization of microfluidic particle sorters based on dielectrophoresis, ” IEEE Sens. J., vol. 5, pp. 646–651, 2005.
[14] B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, “Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water,” Electrophoresis, vol. 25, pp. 1695–1704, 2004.
[15] K. H. Kang, Y. Kang, X. Xuan, and D. Li, “Continuous separation of microparticles by size with direct current-dielectrophoresis,” Electrophoresis, vol. 27, pp. 694–702, 2006.
[16] Hong Liang, William H. Wright, Conly L. Rieder, E.D. Salmon, Glen Profeta, Jeffrey Andrews, Yagang Liu,Gregory J. Sonek, Michael W. Berns,” Directed Movement of Chromosome Arms and Fragments in Mitotic Newt Lung Cells Using Optical Scissors and Optical Tweezers”, Experimental Cell ResearchVolume 213, Issue 1, Pages 308–312, July 1994.
[17] James C. Weavera, Yu.A. Chizmadzhev,” Theory of electroporation: A review”, Bioelectrochemistryand Bioenergetics, Volume 41, Issue 2, Pages 135–160, 1996.
[18] Adam Rosenthal, Joel Voldman,” Dielectrophoretic Traps for Single-Particle Patterning”, Biophysical Journal, Volume 88, Issue 3, Pages 2193–2205, 2005.
[19] Ling-Sheng Jang, Pao-Hua Huang, Kung-Chieh Lan, ”Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes”, Biosensors and Bioelectronics Volume 24, Issue 12, Pages 3637–3644, 2009.
[20] Cheng-Hsin Chuang, Yao-Wei Huang, Yao-Tung Wu, and Ting-Feng Wu, “Programmable Dielectrophoretic Chip for Cell Manipulations,” Japanese Journal of Applied Physics 50, 06GL11, 2011
[21] Bernardo Cordovez, Demetri Psaltis, and David Erickson, “Trapping and storage of particles in electroactive microwells”, APPLIED PHYSICS LETTERS 90, 024102, 2007
[22] K. H. Gilchrist, L. Giovangrandi, and G. T. A. Kovacs, “Analysis of Microelectrode-Recorded Signals from a Cardiac Cell Line as a Tool for Pharmaceutical Screening,” The 11th International Conference on Solid-State Sensors and Actuators, pp. 10-14, 2001.
[23] L. Ye, T.A. Martin, C. Parr, G.M. Harrison, R.E. Mansel, W.G. Jiang, “Biphasic effects of 17-β-estradiol on expression of occludin and transendothelial resistance and paracellular permeability in human vascular endothelial cells”, Journal of Cell. Physiology, vol. 196, pp. 362–369, 2003.
[24] M. Niikura, A. Maeda, T. Ikegami, M. Saijo, I. Kurane, and S. Morikawa, “Modification of endothelial cell functions by Hantaan virus infection: prolonged hyper-permeability induced by TNF-alpha of hantaan virus-infected endothelial cell monolayers,” Archives of Virology, vol. 149, pp. 1279-1292, 2004.
[25] K. H. Gilchrist, L. Giovangrandi, R. H. Whittington, and G. T. A. Kovacs, “Sensitivity of cell-based biosensors to environmental variables,” Biosensors & Bioelectronics, vol. 20, pp. 1397-1406, 2005.
[26] I. Giaever and C. R. Keese, “TOXIC IN CELLS CAN TELL,” Chemtech, vol. 22, pp. 116-125, 1992.