| 研究生: |
冷貞廷 Leng, Chen-Ting |
|---|---|
| 論文名稱: |
以電化學沉積法製備銅銦硒吸收層之薄膜型太陽能電池之研究 Study of electrodeposited CuInSe2 absorption layer on CdS/CuInSe2 thin film solar cell |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 硒化 、銅銦硒太陽能電池 、電鍍 、轉換效率 |
| 外文關鍵詞: | CuInSe2, CdS, electrodeposition, selenization |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用非真空製程製備太陽能電池之吸收層與緩衝層的先驅物薄膜,藉由回火製程參數調變,使薄膜再結晶,提升薄膜之結晶顆粒大小並減少晶格邊界與內部缺陷的問題,改善後轉換效率達到3.77%。
本實驗製備之硫化鎘薄膜,原子經回火製程提供之熱能,修復晶粒間之孔隙,提高結晶品質與電性,回火溫度提高到350℃,薄膜變得緻密,電阻率也從4698Ωcm降至8.44Ωcm。實驗中採共電鍍製備CIS先驅膜,並以兩階段硒化處理提升薄膜品質,以500℃進行硒化,可得較大的晶粒與一致的薄膜,其元件效率達0.77%,將硒化氣壓調至30torr使薄膜組成更接近化學劑量比,抑制內部二次相的生成同時提升Voc與Isc使效率推升到1.3%,為了抑制因快速冷卻所導致之孔隙,調整降溫速率到2℃/s,載子移動路徑減短,降低串聯電阻,Voc從0.196V提升到0.287V,效率達到2.29%,後以碘溶液對薄膜表面進行鈍化後,效率升至3.77%。
CuInSe2 films were fabricated on Mo-coated glass by electro-deposition and selenization processes. The CuInSe2 precursors were selenized at different temperature to enhance the quality and crystallinity. In order to improve the performance of CuInSe2 thin film solar cell, the chemical composition of CuInSe2 absorption layer under different selenization pressure were studied. The relationship between temperature dropping rate and open circuit voltage (Voc) of solar cells was investigated. The value of the Voc was also improved by KCN and I solution surface treatment, sequentially. The solar cell with the AZO/CdS/CIS/Mo/Glass structure was fabricated and the conversion efficiency of 2.82% was obtained.
[1] 楊德仁,”太陽能電池材料”,台中市: 五南圖書出版股份有限公司,2008。
[2] 鄭名山,“太陽能發電簡介”,物理雙月刊(廿九卷三期), 2007。
[3] Wada, T., Kohara, N., Nishiwaki, S., & Negami, T. "Characterization of the Cu (In, Ga) Se2/Mo interface in CIGS solar cells." Thin Solid Films 387.1: 118-122, 2001.
[4] Ruckh, M., Schmid, D., Kaiser, M., Schäffler, R., Walter, T., & Schock, H. W. "Influence of substrates on the electrical properties of Cu(In, Ga)Se2 thin films." Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on. Vol. 1. IEEE, 1994.
[5] Braunger, D., Hariskos, D., Bilger, G., Rau, U., & Schock, H. W. "Influence of sodium on the growth of polycrystalline Cu(In, Ga)Se2 thin films." Thin Solid Films 361: 161-166, 2000.
[6] B. M. Bagol, V. K. Kapur, A. Minnick and C. Leidohlm, “Photovoltaic Specialists Conference.” Conference Recond of the Twenty Third IEEE, 1993.
[7] Yoshihiro Hamak,“Thin-film Solar Cells: Next Generation Photovoltaics and Its Applications. Berlin” New York:Springer, p.164~169, 2004.
[8] Hiie, J., Dedova, T., Valdna, V., & Muska, K. "Comparative study of nano-structured CdS thin films prepared by CBD and spray pyrolysis: annealing effect." Thin Solid Films 511: 443-447, 2006.
[9] 詹岳霖,”硒化銅銦鎵薄膜太陽能電池中緩衝層的製備與特性分析”,國立東華大學光電工程研究所碩士論文,2010。
[10] Ouerfelli, J., Regragui, M., Morsli, M., Djeteli, G., Jondo, K., Amory, C & Bernede, J. C. "Properties of ZnO thin films deposited by chemical bath deposition and post annealed." Journal of Physics D: Applied Physics 39.9: 1954, 2006.
[11] 蔡進譯,“高效率太陽電池-從愛因斯坦的光電效應談起”,物理,雙月刊,二七卷,五期, 2005年10月。
[12] Kazmerski, L. L., F. R. White, and G. K. Morgan. "Thin‐film CuInSe2/CdS heterojunction solar cells." Applied Physics Letters 29.4 268-270, 1976.
[13] 李偉,“濺鍍預製層固態源硒化法製備 CIGS(銅銦鎵硒)薄膜太陽能電池”,天津南開大學博士論文,2006。
[14] 洪忠欽,”以基因演算法萃取太陽能電池特性參數並應用於非晶矽薄膜太陽能電池”,國立成功大學微電子工程研究所碩士論文,2012。
[15] Gretta Mae Ferguson, “An Outdoor Assessment of Organic Solar Cell Performance, “Senior Thesis SUBMITTED AS PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Arts in Physics, Pomona College, June 2013.
[16] R. A. Mickelsen and M. S. Chen , Appl. Phys. Lett. ,vol. 26 , pp.5 , 1980.
[17] Grindle, S. P., Clark, A. H., Rezaie‐Serej, S., Falconer, E., McNeily, J., & Kazmerski, L. L. "Growth of CuInSe2 by molecular beam epitaxy." Journal of Applied Physics 51.10: 5464-5469, 1980.
[18] Romeo, N., Canevari, V., Sberveglieri, G., Bosio, A., & Zanotti, L. "Growth of large-grain CuInSe2 thin films by flash-evaporation and sputtering." Solar Cells 16: 155-164, 1986.
[19] Pamplin, Brian, and R. S. Feigelson. "Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds." Thin Solid Films 60.2: 141-146, 1979.
[20] Wada, T., Matsuo, Y., Nomura, S., Nakamura, Y., Miyamura, A., Chiba, Y., Konagai, M. "Fabrication of Cu (In, Ga) Se2 thin films by a combination of mechanochemical and screen‐printing/sintering processes."physica status solidi (a) 203.11: 2593-2597, 2006.
[21] Faraj, M. G., K. Ibrahim, and A. Salhin. "Effects of Ga concentration on structural and electrical properties of screen printed-CIGS absorber layers on polyethylene terephthalate." Materials Science in Semiconductor Processing15.2: 206-213, 2012.
[22] Pottier, D., and G. Maurin. "Preparation of polycrystalline thin films of CuInSe2 by electrodeposition." Journal of applied electrochemistry 19.3: 361-367, 1989.
[23] Pandey, R. Kumar, Suresh Chandra, and S. N. Sahu. “Handbook of semiconductor electrodeposition.” M. Dekker, 1996.
[24] 胡啟章,”電化學原理與方法”,五南圖書出版公司,2007。
[25] Kang, S. H., Kim, Y. K., Choi, D. S., & Sung, Y. E. "Characterization of electrodeposited CuInSe2 (CIS) film." Electrochimica Acta 51.21: 4433-4438,2006.
[26] Zhang, Z., Li, J., Wang, M., Wei, M., Jiang, G., & Zhu, C. "Influence of annealing conditions on the structure and compositions of electrodeposited CuInSe2 films." Solid State Communications150.47: 2346-2349, 2010.
[27] Kampmann, A., Sittinger, V., Rechid, J., & Reineke-Koch, R. "Large area electrodeposition of Cu (In, Ga) Se2." Thin Solid Films 361: 309-313, 2000
[28] Fathy, Naglaa, Ryohei Kobayashi, and Masaya Ichimura. "Preparation of ZnS thin films by the pulsed electrochemical deposition." Materials Science and Engineering: B 107.3: 271-276, 2004.
[29] 許樹恩、吳泰伯,”X 光繞射原理與材料結構分析”,中國材料學會,新竹,p.169, 1996。
[30] Sebastian, P. J., Calixto, M. E., Bhattacharya, R. N., Fernandez, A. M., & Noufi, R. N. "Cu (In, Ga) Se2 based photovoltaic structure by electrodeposition and processing." SPIE proceedings series. Society of Photo-Optical Instrumentation Engineers, 1998.
[31] Möller, Hans Joachim. Semiconductors for solar cells. Artech House Publishers, 1993.
[32] Caballero, R., and C. Guillen. "CuInSe2 formation by selenization of sequentially evaporated metallic layers." Solar Energy Materials and Solar Cells86.1: 1-10, 2005.
[33] Li, W., Sun, Y., Liu, W., & Zhou, L. "Fabrication of Cu (In, Ga) Se2 thin films solar cell by selenization process with Se vapor." Solar Energy 80.2: 191-195, 2006.
[34] Zaretskaya, E. P., et al. "Raman spectroscopy of CuInSe2 thin films prepared by selenization." Journal of Physics and Chemistry of Solids 64.9: 1989-1993, 2003.
[35] Kim, S. D., Kim, H. J., Yoon, K. H., & Song, J. "Effect of selenization pressure on CuInSe2 thin films selenized using co-sputtered Cu-In precursors." Solar Energy Materials and Solar Cells 62.4: 357-368, 2000.
[36] Kim, K. H., Ahn, S. J., Ahn, B. T., & Yoon, K. H. "Effects of Se atmosphere on the densification of absorber layer using Cu (In, Ga) Se2 nanoparticles for solar cells." Solid State Phenomena. Vol. 124. Trans Tech Publications, 2007.
[37] Batra, N., Kumar, S., Sharma, M., Srivastava, S. K., Sharma, P., & Singh, P. K. "A comparative study of silicon surface passivation using ethanolic iodine and bromine solutions." Solar Energy Materials and Solar Cells100: 43-47, 2012.
[38] Nam, J., Kang, Y., Kim, D., Baek, D., Lee, D., & Yang, J. "The oxidation effect of a Mo back contact on Cu (In, Ga)(Se, S)2 thin-film solar modules." Solar Energy Materials and Solar Cells 144: 445-450, 2016.
[39] Zhu, X., Zhou, Z., Wang, Y., Zhang, L., Li, A., & Huang, F. "Determining factor of MoSe2 formation in Cu (In, Ga) Se2 solar cells." Solar Energy Materials and Solar Cells 101: 57-61, 2012.
校內:2021-07-01公開