| 研究生: |
張仲閔 Chang, Chung-Min |
|---|---|
| 論文名稱: |
低損耗微波介電材料
Li2(Co1-xAx)Ti3O8 (A = Mg, Zn; x = 0.02–0.80)及其在無線通訊元件之應用 Low-Loss Microwave Dielectrics Using Li2(Co1-xAx)Ti3O8 (A = Mg, Zn; x = 0.02–0.80) and Their Applications for Wireless Communication Components |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 微波介電材料 、微帶線 |
| 外文關鍵詞: | dielectric material, microstrip |
| 相關次數: | 點閱:66 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中主要分為兩大部分,第一部份將介紹低損耗的介電材料;第二部份則延續第一部份介紹此材料在被動元件之應用,包含探討於不同基板上元件特性及尺寸的改善。
首先介紹Li2(Co1-xAx)Ti3O8 (A = Mg, Zn; x = 0.02–0.8)陶瓷系統之微波介電特性。在本實驗中分別利用Mg及Zn對Li2CoTi3O8中的Co做取代並探討添加後對其介電特性與材料之微結構是否產生影響。由實驗結果可知Li2(Co0.94Zn0.06)Ti3O8擁有最佳的微波介電特性,在其燒結溫度達1230 °C時其介電係數為24.08,Q×f為121,000 GHz,且共振頻率之溫度飄移係數為 –6.3 ppm/°C; 當Mg取代量為0.05,在燒結溫度達1260 °C時其介電係數為25.61,Q×f為107,000 GHz,且共振頻率之溫度飄移係數為 –4.9 ppm/°C。
第二部份根據諧振器的耦合技術和結合方法,利用基本的電場耦合微帶線結構(調整為SIR結構)並結合SLR結構的諧振器及四分之一開路殘段諧振器,設計一雙頻(2.45/5.2 GHz)帶通濾波器。由於止帶中產生四個傳輸零點,可有效改善濾波器的頻率響應,因為主要目的是使此雙頻帶通濾波器操作在WLAN通訊系統中,因此中心頻率設定於2.45 GHz及5.2 GHz。最後,我們將此電路實作在FR4、Al2O3和Li2(Co0.94Zn0.06)Ti3O8基板上,並量測其頻率響應互相比較。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能有效提升效能和縮小面積。
There are two main subjects in this thesis. First, we will discuss the low loss dielectric material. And the second, there will be a discussion of passive components and improvement of circuit size in different substrates.
First, the microwave dielectric properties of Li2(Co1-xAx)Ti3O8 (A=Mg Zn; x = 0.02–0.8) ceramic system have been investigated. The experiment results show that Li2(Co0.94Zn0.06)Ti3O8 ceramics has the excellent dielectric properties. The dielectric constant of Li2(Co0.94Zn0.06)Ti3O8 is 24.08, Q×f is 121,000 GHz, and τƒ is –6.3 ppm/°C; The dielectric constant of Li2(Co0.95Mg0.05)Ti3O8 is 25.61, Q×f is 107,000 GHz, and τƒ is –4.9ppm/°C.
Second, according to the coupling technique and the combination method, the use of electrically coupled microstrip line structure (adjusted SIR structure) combined with an SLR-structure of the resonator and a quarter of open-stub resonator design a dual-band (2.45/5.2 GHz) band-pass filter with three transmission zeros generated in the stop-bands to modify the response of the filter. The dual-band bandpass filter had the central frequencies of 2.45 and 5.2 GHz and was suitable for the applications in the WLAN communication system.Finally, the pattern was printed on FR4, Al2O3 and Li2(Co0.94A0.06)Ti3O8 substrates. By measured their frequency responses, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.
[1] L.Fang, D.Chu, H.Zhou, X.Chen, and Z.Yang, “Microwave Dielectric Properties and Low Temperature Sintering Behavior of Li2CoTi3O8 Ceramic,” J. Alloys Comp. 509 1880–1884 (2011).
[2] S.George, and M.T.Sebastian, “Synthesis and Microwave Dielectric Properties of Novel Temperature Stable High Q, Li2ATi3O8 (A=Mg, Zn) Ceramics,” J. Am. Ceram. Soc., 93 [8] 2164–2166 (2010).
[3] C.L.Huang, C.H.Su, and C.M.Chang, “High Q Microwave Dielectric Ceramics in the
Li2(Zn1-xAx)Ti3O8 (A = Mg, Co; x = 0.02–0.1) System,” J. Am. Ceram. Soc., 94 [12] 4146–4149 (2011) .
[4] S.George and M.T.Sebastian, “Microwave Dielectric Properties of Novel Temperature Stable High Q Li2Mg1−xZnxTi3O8 and Li2A1−xCaxTi3O8 (A = Mg, Zn) ceramics,” Journal of the European Ceramic Society 30 2585–2592 (2010).
[5] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,”
曉園出版社, (1988).
[6] David M. Pozar “Microwave Engineering,” Addison-Wesley, (1998).
[7] D. Kajfez, A. W. Glisson, and J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[8] D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News., 13 152–161 (1983).
[9] D. Kajfez and P. Guillon, “Dielectric Resonators,” Artech House (1989).
[10] 余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007).
[11] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
[12] W. J. Huppmann and G. Petzow, “Sintering Processes,” Plenum Press, (1979).
[13] R. M. German, “Liquid Phase Sintering,” Plenum Press, (1985).
[14] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
[15] W. F. Smith, 劉品均(譯), 施佑蓉(譯), “材料科學與工程,” 第三版, 高立圖書, (2005).
[16] R. L. Geiger, P. E. Allen, and N. R. Strader, “VLSI Design Techniques for Analog and Digital Circuits,” McGraw-Hill, (1990).
[17] R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
[18] G. Kompa, “Practical Microstrip Design and Applications,” Artech House. (2005).
[19] 張盛富, 戴明鳳, “無線通信之射頻被動電路設計,” 全華出版社, (1998).
[20] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
[21] J. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications,” John Wiley & Sons, (2001).
[22] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures,” Artech House, (1980).
[23] E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980)
[24] X.Y. Zhang, J.X.Chen, Q.Xue,and S.M.Li, “Dual-Band Bandpass Filters Using
Stub-Loaded Resonators,” IEEE Microw. Wireless. Compon. Lett., 8 [17] (2007)
[25] M. Makimoto and S.Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., 28 [12] 1413–1417 (1980).
[26] Q. X. Chu and F. C. Chen, “A Compact Dual-Band Bandpass Filter Using Meandering Stepped Impedance Resonators,” IEEE Microw. Wireless. Compon. Lett., 18 [4] 320–322 (2008).
[27] S.H.Cha:IEEE.Trans.MTT,vol.MTT-33,519(1985).
[28] P.Mondal, and M.K.Mandal, “Design of Dual-Band Bandpass Filters Using Stub-Loaded Open-Loop Resonators,” IEEE Trans. Microwave Theory Tech., 1 [56] (2008).
[29] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[30] W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[31] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[32] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).