簡易檢索 / 詳目顯示

研究生: 黃偵祐
Huang, Chen-Yu
論文名稱: 利用介觀尺度模型分析奈米玻璃對金屬玻璃塑性變形之影響
Mesoscopic scale model to explore nanoglass effect in metal glass
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 羅友杰
Lo, Yu-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: 金屬玻璃奈米玻璃殘留應力應變硬化剪切軟化動力學蒙特卡羅
外文關鍵詞: metallic glass, nanoglass, residual stress, strain hardening, shear softening
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬玻璃擁有高強度、高硬度、耐磨性及耐腐蝕性等特點,屬於潛在的先進結構材料。然而金屬玻璃在室溫下較差的拉伸延展性,容易產生剪切帶,導致金屬玻璃容易出現破裂的行為,在應用上被大大的限制住。
    本研究利用介觀尺度的模型,結合動力學蒙地卡羅(kinetic Monte Carlo, kMC)以及相場微彈性理論(phase-field micro-elasticity theory)等理論來執行計算。第一階段係從殘留應力與軟化因子切入,探討這兩個變因對金屬玻璃機械性質的影響。先針對殘留應力值大小對塊材的機械性質的影響進行討論,再進一步討論殘留應力分佈情形對其影響;接著改變軟化因子,找出能影響剪切帶走向的幾組軟化因子值。
    第二階段則是引入複材模型,利用奈米玻璃的型式來改善金屬玻璃的機械性質。奈米玻璃的結構與金屬玻璃類似,只是其組成顆粒奈米化,而微觀結構來看,奈米玻璃結構中,存在精細的玻璃介面,此玻璃介面的彈性模數與原材料有些許不同,因此本研究將模型改成複材模型,觀察剪切帶在交界面上的走向會如何改變。
    最後,模型透過拉伸過後對應之應力的平均值、標準差及分佈,有系統地整理歸納出金屬玻璃中的變形行為及剪切帶的走向變化。研究結果指出,藉由施加適合的殘留應力值與適當的分布,可以使變形中的剪應變軟化效果減緩;也可以透過複材形式模擬奈米玻璃,其玻璃介面可阻擋剪切帶的延伸,進而增加材料的延展性。

    In this study, the mesoscopic model combines kinetic Monte Carlo (kMC) and phase-field microelasticity theory to proceed with the calculation. In the first stage, the effects of residual stresses and softening factors on the mechanical properties of metallic glass were investigated. In the second stage, a composite model is introduced to improve the mechanical properties of metallic glass by adding the nanoglass. The structure of the nanoglass is similar to the metallic glass, but the constituent particles of nanoglass are nanostructured and sepa-rated by a fine glass interface. The elastic modulus of the glass interface is slightly different from that of the raw material. Through the composite model, one can observe the direction of the shear band changes due to the interface of the nanoglass.
    The results show that the shear strain softening effect can be reduced by applying ap-propriate residual stress and proper distribution. In addition, the adding of nanoglass can block the extension of shear band.

    摘要 I 目錄 VIII 圖目錄 X 表目錄 XIII 第1章 動機與文獻回顧 1 1.1 動機 1 1.2 文獻回顧 3 1.2-1 金屬玻璃的變形機制與缺陷理論 3 1.2-2 金屬玻璃的強化機制 5 1.2-3 導入殘留應力 6 1.2-4 鋯基金屬玻璃(Zirconium-based metallic glass) 7 1.2-5 鋯銅奈米玻璃 8 第2章 理論 10 2.1 過度態理論 10 2.2 基礎彈性理論 11 2.3 動力學蒙地卡羅方法與舉例 13 2.4 週期性邊界 15 2.5 介觀尺度模型歷史 17 2.6 介觀尺度模型架構理論 17 2.7 有限元素法 20 第3章 研究內容與方法 21 3.1 主要模型創建 21 3.1-1 模型資訊 21 3.1-2 均值殘留應力分布 25 3.1-3 複雜殘留應力分布 26 3.2 分析 27 3.2-1 變形行為 27 3.2-2 機械性質 29 3.2-3 操作變因之探討 30 第4章 結果與討論 33 4.1 殘留應力大小 33 4.2 殘留應力分布 36 4.3 軟化因子比值 59 4.4 固定永久軟化因子 82 4.5 固定暫時軟化因子 95 4.6 週期性邊界 108 4.7 複合材料 113 第5章 結論與未來展望 118 5.1 結論 118 5.2 未來展望 119 第6章 參考文獻 120

    [1] N. Li and J. Ma, “Thermoplastic Forming of Metallic Glasses,” Met. Glas. - Prop. Process., 2018, doi: 10.5772/intechopen.78016.
    [2] C. A. Schuh, T. C. Hufnagel, and U.Ramamurty, “Mechanical behavior of amorphous alloys,” Acta Mater., vol. 55, no. 12, pp. 4067–4109, 2007, doi: 10.1016/j.actamat.2007.01.052.
    [3] M. E. Launey, R. Busch, and J. J. Kruzic, “Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass,” Acta Mater., vol. 56, no. 3, pp. 500–510, 2008, doi: 10.1016/j.actamat.2007.10.007.
    [4] H. Chen, T. Zhang, and Y. Ma, “Effect of applied stress on the mechanical properties of a Zr-Cu-Ag-Al bulk metallic glass with two different structure states,” Materials (Basel)., vol. 10, no. 7, 2017, doi: 10.3390/ma10070711.
    [5] Y. Zhao et al., “Effects of Pre-deformation Annealing on Mechanical Properties of Ti-Based Amorphous Alloys,” Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., vol. 46, no. 9, pp. 2366–2370, 2017, doi: 10.1016/s1875-5372(17)30198-4.
    [6] F. O. Méar, G. Vaughan, A. R. Yavari, and A. L. Greer, “Residual-stress distribution in shot-peened metallic-glass plate,” Philos. Mag. Lett., vol. 88, no. 11, pp. 757–766, 2008, doi: 10.1080/09500830802235776.
    [7] H. Ullah, A. Rauf, B. Ullah, M. Rehan, and R. Muhammad, “Explicit dynamics simulation of shot peening process induced by various types of shots impacts,” J. Brazilian Soc. Mech. Sci. Eng., vol. 40, no. 2, 2018, doi: 10.1007/s40430-018-1031-x.
    [8] J. W. Liu, Q. P. Cao, L. Y. Chen, X. D. Wang, and J. Z. Jiang, “Shear band evolution and hardness change in cold-rolled bulk metallic glasses,” Acta Mater., vol. 58, no. 14, pp. 4827–4840, 2010, doi: 10.1016/j.actamat.2010.05.018.
    [9] S. S. Hirmukhe, K. E. Prasad, and I. Singh, “Finite element analysis of tensile deformation of nanoglass-metallic glass laminate composites,” Comput. Mater. Sci., vol. 161, no. February, pp. 83–92, 2019.
    [10] J. Qiao, H. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng. R Reports, vol. 100, pp. 1–69, 2016, doi: 10.1016/j.mser.2015.12.001.
    [11] T. C. Hufnagel, C. A. Schuh, and M. L. Falk, “Deformation of metallic glasses: Recent developments in theory, simulations, and experiments,” Acta Mater., vol. 109, pp. 375–393, 2016, doi: 10.1016/j.actamat.2016.01.049.
    [12] B. Sarac, B. Klusemann, T. Xiao, and S. Bargmann, “Materials by design: An experimental and computational investigation on the microanatomy arrangement of porous metallic glasses,” Acta Mater., vol. 77, pp. 411–422, 2014, doi: 10.1016/j.actamat.2014.05.053.
    [13] C. C. Aydiner, E. Üstündag, M. B. Prime, and A. Peker, “Modeling and measurement of residual stresses in a bulk metallic glass plate,” J. Non. Cryst. Solids, vol. 316, no. 1, pp. 82–95, 2003, doi: 10.1016/S0022-3093(02)01940-3.
    [14] Q. Zhang, Q. K. Li, and M. Li, “Internal stress and its effect on mechanical strength of metallic glass nanowires,” Acta Mater., vol. 91, pp. 174–182, 2015, doi: 10.1016/j.actamat.2015.03.029.
    [15] W. L. Johnson, “Bulk amorphous metal—An emerging engineering material,” JOM, vol. 54, no. 3, pp. 40–43, 2002, doi: 10.1007/BF02822619.
    [16] Z. D. Sha, L. C. He, Q. X. Pei, Z. S. Liu, Y. W. Zhang, and T. J. Wang, “The mechanical properties of a nanoglass/metallic glass/nanoglass sandwich structure,” Scr. Mater., vol. 83, pp. 37–40, 2014, doi: 10.1016/j.scriptamat.2014.04.009.
    [17] A. Al-Ostaz, A. Diwakar, and K. I. Alzebdeh, “Statistical model for characterizing random microstructure of inclusion-matrix composites,” J. Mater. Sci., vol. 42, no. 16, pp. 7016–7030, 2007, doi: 10.1007/s10853-006-1117-1.
    [18] V. V. Bulatov and A. S. Argon, “A stochastic model for continuum elasto-plastic behavior: I. numerical approach and strain localization,” Model. Simul. Mater. Sci. Eng., vol. 2, no. 2, pp. 167–184, 1994, doi: 10.1088/0965-0393/2/2/001.
    [19] E. R. Homer and C. A. Schuh, “Mesoscale modeling of amorphous metals by shear transformation zone dynamics,” Acta Mater., vol. 57, no. 9, pp. 2823–2833, 2009, doi: 10.1016/j.actamat.2009.02.035.
    [20] P. Zhao, J. Li, and Y. Wang, “Heterogeneously randomized STZ model of metallic glasses: Softening and extreme value statistics during deformation,” Int. J. Plast., vol. 40, pp. 1–22, 2013, doi: 10.1016/j.ijplas.2012.06.007.
    [21] S. D. Feng et al., “Control of shear band dynamics in Cu50Zr50 metallic glass by introducing amorphous-crystalline interfaces,” J. Alloys Compd., vol. 770, pp. 896–905, 2019, doi: 10.1016/j.jallcom.2018.08.192.

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE