簡易檢索 / 詳目顯示

研究生: 傅怡文
Fu, I-Wen
論文名稱: 以DSP為基礎之比例-積分控制器與模糊控制器實現於燃料電池混合供電系統
Implementation of DSP-Based Proportional-Integral and Fuzzy Controllers for Hybrid Fuel Cell Systems
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: 比例-積分控制模糊控制最大功率追蹤電壓穩定
外文關鍵詞: Fuzzy controller system, PI controller, maximum power point tracking, voltage stability
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今工業的發展與科技的進步,人們對電的需求不斷提高,燃料電池發電效率較一般傳統發電方式高且具備汙染低、噪音小、機動性高等優點,其反應副產物為水 (H2O) 也較石化能源環保,因此可望廣泛使用在未來的電能供應上,但燃料電池無法提供穩定電壓及瞬間大電流,因此發展出疊接型混合供電系統架構來改善燃料電池的問題。
    本論文使用比例-積分控制法與模糊控制法作為控制架構,應用於燃料電池混合供電系統中,負載端使用電子負載與水泥電阻進行固定負載與改變負載的實驗測試,量測並比較系統之輸出電壓追蹤至200 V所需的安定時間及效率。經由數位訊號處理器實驗結果,上述兩種演算法皆能成功導入系統,並在負載端為電子負載及水泥電阻之固載及變載實測中,皆能達到穩壓。在固定負載之穩壓效果,比例-積分控制器追蹤至穩壓前的超越量約為10 %,追蹤時間為2.6 s,相較模糊控制的超越量4 %及追蹤時間2.3 s,模糊控制的追蹤及穩壓效果是比較好的;電子負載電流由1 A切換至0.5 A時,比例-積分控制使輸出電壓回穩的時間為768 ms,較模糊控制的480 ms長。在負載端為水泥電阻時,能得到更顯著的差異,比例-積分控制器因誤差量的不規律以及振盪過多導致安定時間增加;而模糊控制因不需依賴數學公式,具有較強健的控制性能,因此,經實驗驗證,模糊控制較適合應用於高效能之燃料電池混合供電系統。

    This work presents the digital proportional-integral (PI) and fuzzy logic controllers for the hybrid fuel cell (FC) system using the DC-DC converter of cascoded configuration. The hybrid FC system, which includes the FC, lead-acid battery, and ultra-capacitor, is utilized to improve the poor energy density and energy storage in the fuel cell. Moreover, a comparison between the PI and fuzzy logic controllers is made with consideration to design methodology, power tracking issues, and measured performance. Controllers implemented in a digital signal processor (DSP) are used to compare with startup power, tracking transient response of change in load, and stable output voltage.
    Experimental results show that the output voltage of the hybrid FC system is kept stable at a constant value which is 200 V. By comparing the startup power and load transient response of the DC-DC converter obtained using a PI controller with that obtained using a fuzzy logic controller, the fuzzy logic controller is able to achieve fast transient response, reduce the overshoot and allow a more stable steady-state response than the PI controller.

    中文摘要 i 英文摘要 iii 致謝 ix 目錄 x 表目錄 xii 圖目錄 xiii 第一章 緒論 1 1.1. 研究動機 1 1.2. 研究背景 2 1.3. 論文架構 3 第二章 混合供電系統之電路 4 2.1. 燃料電池種類 4 2.2. 電路架構 6 2.3. 控制策略 11 2.4. DSP系統設計 14 第三章 控制策略介紹 17 3.1. 比例-積分控制器介紹 17 3.2. 模糊控制 19 3.3. 實現於供電系統 26 第四章 系統量測結果 31 4.1. 系統實驗環境介紹 31 4.2. 系統實驗結果 35 第五章 結論 47 5.1. 結論 47 5.2. 未來研究方向 48 參考文獻 49

    [1] Mohibullah, Imdadullah, and I. Ashraf, “Estimation of CO2 Mitigation Potential through Renewable Energy Generation,” IEEE International Conference on Power and Energy, Nov. 2006, pp. 24–29.
    [2] S. J. Chiang, K. T. Chang, and C.-Y. Yen, “Residential Photovoltaic Energy Storage System,” IEEE Transaction on Industrial Electronics, vol. 45, No. 3, pp. 385-394, June 1998.
    [3] 黃鎮江,燃料電池,初版,全華科技圖書,民國九十二年。
    [4] Y. Cho, and J. S. Lai, “High-Efficiency Multiphase DC–DC Converter for Fuel-Cell-Powered Truck Auxiliary Power Unit, “IEEE Transactions Vehicular Technology, vol. 62, no. 6, pp. 2421-2429, Jul. 2013.
    [5] A. Emadi, and S. S. Williamson, “Fuel Cell Vehicles: Opportunities and Challenges,” IEEE Power Engineering Society General Meeting, vol. 2, no. 5, pp. 1640-1645, Jun. 2004.
    [6] J. Bauman and M. Kazerani, “A Comparative Study of Fuel-Cell–Battery, Fuel-Cell–Ultracapacitor, and Fuel-Cell–Battery–Ultracapacitor Vehicles,” IEEE Transactions on Vehicular Technology, vol. 57, no. 2, pp. 760-769, Mar. 2008.
    [7] M. Ortuzar, J. Moreno, and J. Dixon, “Ultracapacitor-Based Auxiliary Energy System for an Electric Vehicle: Implementation and Evaluation,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2147-2156, Aug. 2007.
    [8] W. S. Liu, J. F. Chen, T. J. Liang, and R. L. Lin, “Multicascoded Sources for a High-Efficiency Fuel-Cell Hybrid Power System in High-Voltage Application,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 931-942, Mar. 2011.
    [9] L. Guo, J. Y. Hung, and R. M. Nelms, “Evaluation of DSP-Based PID and Fuzzy Controllers for DC–DC Converters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2237-2248, Jun. 2009.
    [10] P. Z. Lin, C. M. Lin, C. F. Hsu, and T. T. Lee, “Type-2 Fuzzy Controller Design Using a Sliding-Mode Approach for Application to DC-DC Converters,” IEE Proceedings-Electrical Power Applications, vol. 152, no. 6, pp. 1482-1488, Nov. 2005.
    [11] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963-973, Jul. 2005.
    [12] K.H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum Photovoltaic Power Tracking:An Algorithm for Rapidly Changing Atomospheric Conditions,” IEE Proceedings-Generation, Transmission and Distribution, vol. 142, pp. 59-64, Jan, 1995.
    [13] J. M. Lin, S. J. Huang, and K. R. Shih, “Application of Sliding Surface-Enhanced Fuzzy Control for Dynamic State Estimation of a Power System,” IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 570-577, May. 2003.
    [14] S. W. Kim and J. J. Lee, “Design of a Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, vol. 71, no. 3, pp. 359-367, May. 1995.
    [15] Y. Li and Z. Ji, “An Approach on T-S Fuzzy Model and Control of Buck-Boost Converter,” Proceedings of the 7th World Congress on Intelligent Control and Automation, pp. 91-96, Jun. 2008.
    [16] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1022-1030, Apr. 2011.
    [17] K. Viswanathan, D. Srinivasan and R. Oruganti, “A Universial Fuzzy Controller for a Non-linear Power Electronic Converter,” IEEE International Conference on Fuzzy System, vol. 1, 2002, pp. 46-51.
    [18] C. F. Schoenbein, “The Voltaic Polarization of Certain Solid and Fluid Substances,” Philosophical Magazine Series 3, vol. 14, no. 85, pp. 43-45, 1839.
    [19] 王曉紅、黃宏,燃料電池基礎,全華書局出版,民國九十七年。
    [20] 左峻德,燃料電池之特性與應用,國家實驗研究科學資料中心,民國九十九年。
    [21] C. Wang, M. H. Nehrir and S. R. Shaw, “Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 442-451, Jun. 2005.
    [22] W. S. Liu, J. F. Chen, T. J. Liang, R. L. Lin, and C. H. Liu, “Analysis, Design, and Control of Bidirectional Cascoded Configuration for a Fuel Cell Hybrid Power System,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 1565-1575, Jun. 2010.
    [23] R. J. Wai, and R. Y. Duan, “High-Efficiency Bidirectional Converter for Power Sources with Great Voltage Diversity,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1986-1996, Sep. 2007.
    [24] R. J. Wai, and R. Y. Duan, “High-Efficiency Power Conversion for Low Power Fuel Cell Generation System,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 847-856, Jul. 2005.
    [25] P. Famouri, and R. S. Gemmen, “Electrochemical Circuit Model of a PEM Fuel Cell,” IEEE Power Engineering Society General Meeting, vol. 3, Jul. 2003, pp. 1436-1440.
    [26] Z. Jiang, L. Gao, and R. A. Dougal, “Flexible Multiobjective Control of Power Converter in Active Hybrid Fuel Cell/Battery Power Sources,” IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 244-253, Jan. 2005.
    [27] P. H. Chang, and J. H. Jung, “A Systematic Method for Gain Selection of Robust PID Control for Nonlinear Plants of Second-Order Controller Canonical Form,” IEEE Transactions on Control Systems Technology, vol. 20, no. 4, pp. 473-483, Mar. 2009.
    [28] M. J. Neath, A. K. Swain, U. K. Madawala, and D. J. Thrimawithana, “An Optimal PID Controller for a Bidirectional Inductive Power Transfer System Using Multiobjective Genetic Algorithm,” IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1523-1531, Mar. 2014.
    [29] N. Minorsky, “Directional Stability of Automatically Steered Bodies,” Journal of the American Society for Naval Engineers, vol. 34, no. 2, pp. 280-309, 1922.
    [30] A. Contin, and G. Rabach, “PD Analysis of Rotating AC Machines,” IEEE Transactions on Electrical Insulation, vol. 28, no. 6, pp. 1033-1042, Dec. 1993.
    [31] Y. Su, D. Sun, L. Ren, and J. K. Mills, “Integration of Saturated PI Synchronous Control and PD Feedback for Control of Parallel Manipulators,” IEEE Transactions on Robotics, vol. 22, no. 1, pp. 202-207, Feb. 2006.
    [32] 江昭皚等人,農業自動化叢書第十二輯-機電整合,民國九十二年。
    [33] M. Black. “Vagueness: an Exercise in Logical Analysis,” Philosophy of Science, vol. 4, pp. 427-455, 1937.
    [34] L. A. Zadeh. “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp.338-353, Jun. 1965.
    [35] 李允中、王小璠與蘇木春,模糊理論及其應用,全華書局出版,民國一百零一年。

    無法下載圖示 校內:2019-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE