| 研究生: |
張婉茹 Chang, Wan-Ju |
|---|---|
| 論文名稱: |
製備Fe3O4-褐藻酸鈉/聚氧化乙烯奈米纖維之複合材料,並探討其特性及體外過熱治療效果 Studies of preparation and characterization of the magnetite-sodium alginate/PEO nanofibers and its hyperthermia effect in vitro |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 電紡絲 、褐藻酸鈉 、磁性奈米粒子 、過熱治療 |
| 外文關鍵詞: | Electrospinning, Sodium alginate, Magnetic nanoparticles, Hyperthermia |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
褐藻酸鈉為水溶性的天然生物高分子,由於無毒性、具有良好的生物相容性(biocompatibility)及生物降解性(biodegradability),已經過美國食品既藥物管理局(FDA)認可。本研究目標是製備出一含有Fe3O4的褐藻酸鈉/聚氧化乙烯 (Fe3O4-SA/PEO)的奈米纖維膜。以化學共沉澱法合成磁性奈米粒子(Fe3O4),將其吸附於褐藻酸鈉/聚氧化乙烯(SA/PEO)電紡絲奈米纖維膜,形成一Fe3O4-SA/PEO複合材料。希望能集中四氧化三鐵於腫瘤部位並藉由誘導磁性奈米顆粒產生熱殺死癌細胞,加強癌症之過熱治療效果。
我們使用掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)觀察複合材料的纖維形態以及Fe3O4的分佈情形;藉由X光繞射儀(XRD)和超導體量子干涉震動磁量儀(SQUID),得知複合材料中Fe3O4的結晶結構及具有超順磁特性;以感應耦合電漿質譜分析儀(ICP-MS)儀器測得鐵元素佔整體材料約30%。此外,利用高週波加熱器誘導複合材料產生熱,並發現具有良好的升溫效果。
在細胞實驗方面,以LDH assay及WST-1 test分別測試材料對小鼠大腸直腸癌細胞(CT26)的生物毒性以及體外(in vitro)過熱治療效果。由LDH assay數據顯示,由於材料在第一天會釋放出高濃度的Fe3+或Fe2+,造成約45%的CT26細胞死亡,當培養至第三天,材料對細胞的毒性降低,死亡率與控制組(培養液)相似;在磁場環境中,Fe3O4-SA/PEO被誘導產生熱殺死CT26細胞的效果與純Fe3O4顆粒相近,此過熱治療的結果亦受到Fe3+及Fe2+的影響;因此,未來我們必須改進交聯及氧化鐵合成的方法以降低鐵離子及亞鐵離子的產生,同時也要兼顧纖維的形態。期許未來Fe3O4-SA/PEO材料可以廣泛應用於治療癌症領域。
Sodium alginate is a water-soluble natural biopolymer. Because of its nontoxicity, biodegradability and biocompatibility, it has been approved by FDA. In this study, we prepared a magnetite-sodium alginate/polyethylene oxide (Fe3O4-SA/PEO) nanofibrous mats. Fe3O4 were synthesized by chemical co-precipitation technique and loaded into sodium alginate-based nanofibers which have been electrospun by blending with a biocompatible, synthetic polymer PEO. To enhance hyperthermia effect, the Fe3O4-SA/PEO nanofibrous mats were placed around tumor followed by induction heating by high-frequency AC magnetic induction heater to generate the heat to kill cancer cells.
The morphology of composite and the distribution of Fe3O4 was observed by SEM and TEM micrographs. The results of XRD and SQUID showed the crystalline structure of Fe3O4 and superparamagnetism characteristic. Around 30wt% of Fe were presented in Fe3O4-SA/PEO nanofibrous mat as measured by ICP-MS. Besides, good heating efficiency in Fe3O4-SA/PEO nanofibrous mat was induced in magnetic field.
The cytotoxicity and in vitro hyperthermia effect for CT26 cells were evaluated by LDH assay and WST-1 test, respectively. In LDH test, on the first day, because of high concentration of Fe2+or Fe3+ was released from Fe3O4-SA/PEO, the cell death of this composite was approximate to 45% and it was higher than control group (medium only). However, there was no significant difference between Fe3O4-SA/PEO and control group on the third day. The hyperthermia effect of Fe3O4-SA/PEO was similar to pure Fe3O4 under the AC magnetic field. These results could attributed to the release of Fe2+or Fe3+ during the early cell incubation period. Therefore, it is essential to improve the methods for composite crosslinking as well as magnetite synthesis to decrease the release of iron ions and to ensure that the shape of Fe3O4-SA/PEO nanofibrous mat remained stable in the same time. We believe that Fe3O4-SA/PEO nanofibrous mats have excellent potential as an adjuvant hyperthermia for cancer treatment in the future.
1.R. McAllister, S.T. Horowitz and R.V. and Gilden, Cancer. 1993., New York, USA: A Division of HarperCollins Publisbers, Lnc.
2.C.M. Haskell and J.S. Berek, Cancer treatment. 5th ed. 2001, Philadelphia: W.B. Saunders. xxiv, 1682 p.
3.李門輝, 癌的基礎科學. 1987: 合記圖書出版社.
4.D.E. Gerber, Targeted therapies: A new generation of cancer treatments. American Family Physician, 2008. 77(3): p. 311-319.
5.C.S.S.R. Kumar and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 2011. 63(9): p. 789-808.
6.近角聰信, 磁性物理學. 1981: 聯經出版事業公司.
7.李國棟, 無所不在的磁: 粒子磁矩與固體磁性. 2005: 世潮出版有限公司.
8.陳亦瀚, 以離子型高分子製備核殼型與中空型奈米磁性複合微粒之研究. 南台科技大學化學工程研究所碩士論文, 2006.
9.S.P. Gubin, Magnetic nanoparticles. 2009, Weinheim: Wiley-VCH. xiv, 466 p.
10.A. Mukhopadhyay, N. Joshi, K. Chattopadhyay and G. De, A Facile Synthesis of PEG-Coated Magnetite (Fe3O4) Nanoparticles and Their Prevention of the Reduction of Cytochrome C. Acs Applied Materials & Interfaces, 2012. 4(1): p. 142-149.
11.D.L. Huber, Synthesis, properties, and applications of iron nanoparticles. Small, 2005. 1(5): p. 482-501.
12.J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek and J. Hubalek, Magnetic nanoparticles and targeted drug delivering. Pharmacological Research, 2010. 62(2): p. 144-149.
13.M. Mahmoudi, S. Sant, B. Wang, S. Laurent and T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 2011. 63(1-2): p. 24-46.
14.Y.S. Kang, S. Risbud, J.F. Rabolt and P. Stroeve, Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chemistry of Materials, 1996. 8(9): p. 2209-&.
15.A. Joshi, S. Solanki, R. Chaudhari, D. Bahadur, M. Aslam and R. Srivastava, Multifunctional alginate microspheres for biosensing, drug delivery and magnetic resonance imaging. Acta Biomaterialia, 2011. 7(11): p. 3955-3963.
16.T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey and G. Rogez, Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chemistry of Materials, 2006. 18(18): p. 4399-4404.
17.X. Wang, J. Zhuang, Q. Peng and Y.D. Li, A general strategy for nanocrystal synthesis. Nature, 2005. 437(7055): p. 121-124.
18.S. Ge, X.Y. Shi, K. Sun, C.P. Li, C. Uher, J.R. Baker, M.M.B. Holl and B.G. Orr, Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. Journal of Physical Chemistry C, 2009. 113(31): p. 13593-13599.
19.G.M. Bhalerao, A.K. Sinha, H. Srivastava and A.K. Srivastava, Synthesis and studies of growth kinetics of monodispersed iron oxide nanoparticles using ferrocene as novel precursor. Applied Physics a-Materials Science & Processing, 2009. 95(2): p. 373-380.
20.W. Wu, Q. He and C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett, 2008. 3(11): p. 397-415.
21.I. Sharifi, H. Shokrollahi and S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials, 2012. 324(6): p. 903-915.
22.S. Chandra, K.C. Barick and D. Bahadur, Oxide and hybrid nanostructures for therapeutic applications. Advanced Drug Delivery Reviews, 2011. 63(14-15): p. 1267-1281.
23.S.A. Meenach, J.Z. Hilt and K.W. Anderson, Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomaterialia, 2010. 6(3): p. 1039-1046.
24.S. Ramakrishna, An introduction to electrospinning and nanofibers. 2005, Hackensack, NJ: World Scientific. xi, 382 p.
25.K. Garg and G.L. Bowlin, Electrospinning jets and nanofibrous structures. Biomicrofluidics, 2011. 5(1): p. 13403.
26.A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi and P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 2010. 70(5): p. 703-718.
27.Z.M. Huang, Y.Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
28.T.J. Sill and H.A. von Recum, Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
29.N. Bhardwaj and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 2010. 28(3): p. 325-347.
30.A. Banuskeviciute, E. Adomaviciute, R. Milasius and S. Stanys, Formation of Thermoplastic Polyurethane (TPU) Nano/Micro Fibers by Electrospinning Process Using Electrode with Tines. Materials Science-Medziagotyra, 2011. 17(3): p. 287-292.
31.Baumgart.Pk, Electrostatic Spinning of Acrylic Microfibers. Journal of Colloid and Interface Science, 1971. 36(1): p. 71-&.
32.S.L. Shenoy, W.D. Bates, H.L. Frisch and G.E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer, 2005. 46(10): p. 3372-3384.
33.A. Koski, K. Yim and S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 2004. 58(3-4): p. 493-497.
34.H. Fong, I. Chun and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585-4592.
35.C.A. Bonino, M.D. Krebs, C.D. Saquing, S.I. Jeong, K.L. Shearer, E. Alsberg and S.A. Khan, Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydrate Polymers, 2011. 85(1): p. 111-119.
36.X.H. Zong, K. Kim, D.F. Fang, S.F. Ran, B.S. Hsiao and B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): p. 4403-4412.
37.F. Llanes, D.H. Ryan and R.H. Marchessault, Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix. International Journal of Biological Macromolecules, 2000. 27(1): p. 35-40.
38.D.W. Fang, Y. Liu, S. Jiang, J. Nie and G.P. Ma, Effect of intermolecular interaction on electrospinning of sodium alginate. Carbohydrate Polymers, 2011. 85(1): p. 276-279.
39.N. Bhattarai, Z.S. Li, D. Edmondson and M.Q. Zhang, Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties. Advanced Materials, 2006. 18(11): p. 1463-+.
40.S. Moon, B.Y. Ryu, J. Choi, B. Jo and R.J. Farris, The Morphology and Mechanical Properties of Sodium Alginate Based Electrospun Poly(ethylene oxide) Nanofibers. Polymer Engineering and Science, 2009. 49(1): p. 52-59.
41.H.R. Nie, A.H. He, J.F. Zheng, S.S. Xu, J.X. Li and C.C. Han, Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules, 2008. 9(5): p. 1362-1365.
42.S.K.R. Alexander Steinbüchel, ed. Polysaccharides And Polyamides In The Food Industry: Properties, Production And Patents. Vol. 2. 2005.
43.K. Katsoufidou, S.G. Yiantsios and A.J. Karabelas, Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing. Journal of Membrane Science, 2007. 300(1-2): p. 137-146.
44.R.K. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott and C.B. Taylor, Selective inductive heating of lymph nodes. Ann Surg, 1957. 146(4): p. 596-606.
45.A. Ito, M. Shinkai, H. Honda and T. Kobayashi, Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005. 100(1): p. 1-11.
46.A. Ito, H. Honda and T. Kobayashi, Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of "heat-controlled necrosis" with heat shock protein expression. Cancer Immunology Immunotherapy, 2006. 55(3): p. 320-328.
47.U. Jeong, X.W. Teng, Y. Wang, H. Yang and Y.N. Xia, Superparamagnetic colloids: Controlled synthesis and niche applications. Advanced Materials, 2007. 19(1): p. 33-60.
48.汪建民, 材料分析. 1998: 中國材料科學學會.
49.林麗娟,鄭信民, XRD應用簡介. 工業材料雜誌, 2002. 181期: p. 100-108.
50.楊鴻昌, 最敏感的感測元件SQUID 及其前瞻性應用. 物理雙月刊, 2002.
51.李珠, 感應耦合電漿質譜分析儀技術及其在材料分析上的應用. 工業材料雜誌, 2002. 181期: p. 87-93.
52.Z. Durmus, H. Sozeri, B. Unal, A. Baykal, R. Topkaya, S. Kazan and M.S. Toprak, Magnetic and dielectric characterization of alginic acid-Fe3O4 nanocomposite. Polyhedron, 2011. 30(2): p. 322-328.
53.D.-H. Sun, J.-L. Zhang, D.-X. Sun and Y. Hao, One-Pot Synthesis of Multi-Branched FeO(OH) Nanorods. Materials Science Forum 2011. 663 - 665: p. 914-917.
54.N. Bhattarai and M.Q. Zhang, Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology, 2007. 18(45).
校內:2017-08-10公開