| 研究生: |
吳建燁 Wu, Chien-Yeh |
|---|---|
| 論文名稱: |
(Mg1-xCox)La2Zr2O8微波介電陶瓷之研究與應用 Study and Applications of Microwave Dielectric Ceramics(Mg1-xCox)La2Zr2O8 |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 微波介電材料 、帶通濾波器 |
| 外文關鍵詞: | microwave dielectric ceramic, band-pass filter |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中主要分為兩大部分,第一部分將介紹低損耗的介電材料;第二部分將介紹其在被動元件之應用,並實作在不同基板上,用以探討元件尺寸之改善。
第一部分首先介紹MgLa2Zr2O8陶瓷之微波介電特性。接著使用與Mg2+離子半徑相近的Co2+對MgLa2Zr2O8中的Mg2+做取代並探討(Mg1-xCox)La2Zr2O8微波介電特性與材料微結構之影響。由實驗可以得知,該系統之MgLa2Zr2O8在1490℃燒結12小時可獲得最佳介電特性,ε_r ~ 20.87,Q×f ~ 10,3000GHz(at ~8.65GHz),τf ~ -44.2 ppm/℃;在Co取代量為0.2,(Mg1-xCox)La2Zr2O8燒結溫度降低至1460℃,其ε_r ~ 23.49,Q×f ~ 82,000,τf ~ -42.23ppm/℃。
第二部分我們設計及實作一操作在2.45GHz的微帶線帶通濾波器,濾波器採用方形環狀諧振器為主體,其對稱面上加入一正方形電容性微擾物,以激發奇偶模態的耦合,並在共振頻率的高低頻處產生傳輸零點,透過改變微擾物大小可以調變通帶之頻寬,接著使用line-to-ring coupling的方式饋入以改善插入損耗,再加入一λ/4開路殘段(open-stub)來抑制倍頻響應。最後將此電路實作在FR4、Al2O3及MgLa2Zr2O8自製基板上,並量測其頻率響應。由量測結果可得知,利用高介電系數及低耗損材料作為電路基板時,確實能達到提升效能及縮小面積的需求。
First, the microwave dielectric properties and microstructure of MgLa2Zr2O8 ceramics have been investigated. The experimental results show that MgLa2Zr2O8 has the best properties at sintering temperature 1490℃ for 12 hours, with ε_r~20.87, Q×f~ 10,3000GHz(at 8.65GHz), and τf ~-44.23ppm/℃. Then the Mg2+ from the MgLa2Zr2O8 had been substituted by Co2+, at x = 0.2, the sintering temperature is lowered to 1460℃, with ε_r~23.49, Q×f~82,0000, τf ~-42.21 ppm/℃.Second, a dual-mode square ring line-to-ring band-pass filter that operates at 2.45GHz was designed and fabricated. The bandwidth of the passband can be modulated by changing the perturbation size. In order to suppress spurious response, an open-stub was attached to the feed line. Finally, the pattern was implemented on FR4, Al2O3 and MgLa2Zr2O8 substrates. The measurement results show using the substrates with high dielectric constant and low loss can improve the performance and reduce filter size.
[1] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[2] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
[3] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News., 13, 152–161 (1983).
[4] Kajfez, D.; Glisson, AW.; James, J., "Computed Modal Field Distributions of Isolated Dielectric Resonators," Microwave Symposium Digest, 1984 IEEE MTT-S International , vol., no., pp.193,195, May 30 1984-June 1 1984
[5] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[6] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
[7] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
[8] 余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007).
[9] R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI design techniques for analog and digital circuits,” McGraw-Hill, (1990).
[10] R. A. Pucel, D. J. Masse, C. P. Hartwig, “Losses in microstrip,” 16 [6] 342–350 (1968).
[11] J. S. Hong, M. J. Lancaster, “Microwave filters for RF/microwave applications,” John Wiley & Sons, (2001).
[12] G. Kompa, “Practical microstrip design and applications,” Artech House, (2005).
[13] K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, “Microstrip lines and slotlines,” Second Edition, Artech House, (1996).
[14] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedance matching networks and coupling structures,” Artech House, (1980).
[15] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[16] K. Chang, Microwave Ring Circuits and Antennas. New York: Wiley, 1996.
[17] I. Wolff, “Microstrip Bandpass Filter Using Degenerate Modes of a MicrostripRing Resonator, ” IEEE Electron Letter, vol. 8, no. 12, pp. 302-303, June 1972.
[18] Hiroyuki Yabuki, Morikazu Sagawa, Michiaki Matsuo and Mitsuo Makimoto,“Stripline Dual-Mode Ring Resonators and Their Application to Microwave Devices,” IEEE Transactions On Microwave Theory and Techniques, vol. 44, no.5, May. 1996.
[19] Morikazu Sagawa, Mitsuo Makimoto and Sadahiko Yamashita, “ Geometrical Structures and Fundamental Characteristics of Microwave Steppd-Impedance Resonators,” IEEE Transactions On Microwave Theory and Techniques, vol. 45,no. 7, July. 1997.
[20] Michiaki Matsuo, Hiroyuki Yabuki, and Mitsuo Makimoto, “ Dual-Mode Stepped-Impedance Ring Resonator for Bandpass Filter Applications,” IEEE Transactions On Microwave Theory and Techniques, vol. 49, no. 7, July. 2001.
[21] Arun Chandra Kundu and Ikuo Awai, “ Control of Attenuation Pole Frequency of a Dual-Mode Microstrip Ring Resonator Bandpass Filter,” IEEE Transactions On Microwave Theory and Techniques, vol. 49, no. 6, June. 2001.
[22] Lei Zhu; Ke Wu, "Line-to-ring coupling circuit model and its parametric effects for optimized design of microstrip ring circuits and antennas," Microwave Symposium Digest, 1997., IEEE MTT-S International , vol.1, no., pp.289,292 vol.1, 8-13 June 1997.
[23] Zhu, Lei; Ke Wu, "A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits," IEEE Transactions on Microwave Theory and Techniques , vol.47, no.10, pp.1938,1948, Oct 1999.
[24] Hakki, B.W.; Coleman, P.D., "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," Microwave Theory and Techniques, IRE Transactions on , vol.8, no.4, pp.402,410, July 1960
[25] Courtney, W.E., "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," Microwave Theory and Techniques, IEEE Transactions on , vol.18, no.8, pp.476,485, Aug 1970
[26] Wheless, P.; Kajfez, D., "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," Microwave Symposium Digest, 1985 IEEE MTT-S International , vol., no., pp.473,476, 4-6 June 1985
[27] Kobayashi, Y.; Katoh, Masayuki, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," Microwave Theory and Techniques, IEEE Transactions on , vol.33, no.7, pp.586,592, Jul 1985
[28] Tao Ting-ting, Wang Li-xi, Zhang Qi-tu, Study on the composite and properties of Y2O3–TiO2 microwave dielectric ceramics, Journal of Alloys and Compounds, Volume 486, Issues 1–2, 3 November 2009, Pages 606-609.
[29] J. Roberto Esquivel-Elizondo , Beverly Brooks Hinojosa , and Juan C. Nino, Bi2Ti2O7: It Is Not What You Have Read, Chem. Mater., 2011, 23 (22), pp 4965–4974.
[30] Sudheendran K., Raju K., and Jacob M., Microwave dielectric properties of Ti-substituted Bi2(Zn2/3Nb4/3)O7 pyrochlores at cryogenic temperatures, J. Am. Ceram. Soc., 2009, 92(6): 1268.
[31] Hyuk-Joon Youn, Clive Randall, Ang Chen, Tom Shrout and Michael T. Lanagan (2002). Dielectric relaxation and microwave dielectric properties of Bi2O3–ZnO–Ta2O5 ceramics. Journal of Materials Research, 17, pp 1502-1506.
[32] Wang, X., Wang, H. and Yao, X. (1997), Structures, Phase Transformations, and Dielectric Properties of Pyrochlores Containing Bismuth. Journal of the American Ceramic Society, 80: 2745–2748.
[34] Urša Pirnat, Danilo Suvorov, Dielectric properties and phase transitions of Bi3Nb1−xTaxO7 fluorite-type dielectrics, Journal of the European Ceramic Society, Volume 27, Issues 13–15, 2007, Pages 3843-3846
[35] ROTH, R. S. (1956), Zirconia Reactions in Binary Oxide Systems. Journal of the American Ceramic Society, 39: 196.
[36] Rabenau, A. (1956), Perowskit- und Fluoritphasen in den Systemen ZrO2 - LaO1,5 - MgO und ZrO2 - LaO1,5 - CaO. Z. anorg. allg. Chem., 288: 221–234.
[37] J.A. Labrincha, J.R. Frade, F.M.B. Marques, Protonic conduction in La2Zr2O7-based pyrochlore materials, Solid State Ionics, Volume 99, Issues 1–2, 1 August 1997, Pages 33-40.
[38] Mårten E. Björketun, Christopher S. Knee, B. Joakim Nyman, Göran Wahnström, Protonic defects in pure and doped La2Zr2O7 pyrochlore oxide, Solid State Ionics, Volume 178, Issues 31–32, 15 January 2008, Pages 1642-1647,
[39] Hiroshi Yamamura, Hanako Nishino, Katsuyoshi Kakinuma, Relationship between oxide-ion conductivity and dielectric relaxation in the Ln2Zr2O7 system having pyrochore-type compositions (Ln=Yb, Y, Gd, Eu, Sm, Nd, La), Journal of Physics and Chemistry of Solids, Volume 69, Issue 7, July 2008, Pages 1711-1717.
[40] Microstructure and Microwave Dielectric Properties of Ba(Co1/3Nb2/3)O3 Ceramics. Cheol-Woo Ahn, Sahn Nahm, Yun-Soo Lim1, Woong Choi2, Hyun-Min Park3 and Hwack-Joo Lee.2002 Jpn. J. Appl. Phys. 41 5277.
[41] Di Zhou, Hong Wang, Xi Yao, Li-Xia Pang, Sintering behavior and microwave dielectric properties of Bi3(Nb1-xTax)O7 solid solutions. Materials Chemistry and Physics, Volume 110, Issues 2–3, 15 August 2008, Pages 212-215.