簡易檢索 / 詳目顯示

研究生: 周冠賢
Chou, Kuan-Hsien
論文名稱: 邊界導通錯相式升壓型功因修正電路控制IC研製
Design and Implementation of a Control IC for Interleaved BCM Boost PFCs
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 80
中文關鍵詞: 錯相式邊界導通模式主從式控制
外文關鍵詞: Interleaved, BCM control, master-slave control
相關次數: 點閱:145下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於研製一新型邊界導通錯相式升壓型功因修正電路控制IC,此控制方式不僅保有邊界導通模式的低切換損的優勢,更可大幅提升轉換器的輸出功率。本控制器採用的錯相式控制策略為電壓模式之主從式導通瞬間相移控制法。傳統的錯相控制策略有時會使電路無法保持在邊界導通模式。為了解決此問題,本文不僅提出一個新型的相移電路,並且使用了第二組的零電流偵測電路產生從電路的零切訊號,配合相移電路所產生的相移訊號,使得從電路可以保持在邊界導通模式操作。另外,當兩組儲能電感値存在偏差時,本控制IC依舊可以保持正常的操作行為。最後,本晶片採用TSMC 0.25 UM CMOS HIGH VOLTAGE MIXED SIGNAL BASED BCD 1P5M SALICIDE 2.5/5/60 V 製程實現。

    In this thesis, a novel interleaved BCM boost PFC control IC is designed and implemented. This contoller not only retains the advantage of low swtiching loss of BCM control but also increases the power rating of converter. The voltage mode master-slave interleaved control with turn-on instant phase-shift is adopted in the proposed controller. Conventionally, the interleaved BCM control scheme may occasionally operate in CCM due to pertubations. To solve this problem, the thesis proposes a novel phase-shifter to generate phase-shift signal. And the second zero current detector cooperated with the phase-shift signal is utilized to make the slave converter operate under BCM. In addition, this controller can always operate in normal condition even under the mismatch of two boost inductors. Finally, this chip is fabricated with TSMC 0.25 UM CMOS HIGH VOLTAGE MIXED SIGNAL BASED BCD 1P5M SALICIDE 2.5/5/60 V process.

    1. Introduction............................................1 1.1 Background.........................................1 1.2 Research motivation................................3 1.3 Organization.......................................4 2. Fundamental AC-DC power factor correction circuit and interleaved control concepts............................5 2.1 Power factor correction circuits...................5 2.1.1 Introduction of AC-DC power factor correction circuits.........................5 2.1.2 BCM control scheme for boost PFC............8 2.2 Basic concept of interleaved control..............10 2.2.1 Interleaved boost converter................10 2.2.2 Basic open-loop master-slave control concepts...................................11 2.3 The operation of interleaved boost PFC converter with BCM control..................................14 2.4 Interleaved boost PFC with conventional open-loop BCM control scheme................................22 3. Analysis and design of the proposed controller.........26 3.1 Introduction of the proposed interleaved control..26 3.2 The operating principle of the proposed control scheme............................................28 3.3 Introduction of the architecture..................32 3.4 Design of control function blocks.................34 3.4.1 Error amplifier............................34 3.4.2 ZCD (Zero current detector)................35 3.4.3 Reset-timer................................37 3.4.4 Master, slave PWM controller...............39 3.4.5 On-time modulator..........................41 3.4.6 Phase-shifter..............................42 3.4.7 Sequence detector..........................46 3.4.8 Slave on-time trimming.....................48 3.5 CMOS circuit design...............................48 3.5.1 Constant transconductance bias circuit.....48 3.5.2 Two-stage Op-Amp...........................51 3.5.3 Comparator.................................53 3.5.4 Edge detector..............................57 3.5.5 Buffer.....................................59 4. Layout and simulation of the proposed interleaved BCM controller.............................................61 4.1 Layout............................................61 4.2 System simulation results.........................62 4.2.1 Waveforms of function blocks...............64 4.2.2 Interleaved system waveforms...............69 5. Conclusions and future work............................72 5.1 Conclusions.......................................72 5.2 Future works......................................72 References................................................73

    [1] N. Mohan, T. M. Undeland and W. P. Robbins, Power
    Electronics, John Wiley & Sons, Inc., 2003.
    [2] R. Redl, “Power electronics and electromagnetic
    compatibility,” Proc. of IEEE Power Electronics
    Specialists Conference, PESC’96, pp. 15-21, June 1996.
    [3] IEC 555-2: “Disturbances in supply systems caused by
    household appliances and similar electrical equipment –
    Part 2: Harmonics,” IEC, 1982.
    [4] J. S. Lai and D. Chen, “Design considerations for power
    factor correction boost converter operating at the
    boundary of continuous conduction mode and
    discontinuous conduction mode,” IEEE Applied Power
    Electronics Conference, pp. 267-273, Mar. 1993.
    [5] “L6561 Power Factor Corrector Controller,”
    STMicroelectronics, 2003.
    [6] “UCC28019 CCM PFC Controller,” Texas Instruments, Dec.
    2007.
    [7] “TDA4863 Power Factor Controller IC for High Power
    Factor and Low THD,” Infineon Technologies, May 2003.
    [8] “FAN9611 / FAN9612 Interleaved Dual BCM PFC
    Controllers,” Fairchild, Apr. 2011.
    [9] “UCC28060 Dual Phase Transition-Mode PFC Controller,”
    Texas Instruments, May 2007.
    [10] J. W. Kim, S. M. Choi, K. T. Kim, “Variable On-Time
    Control of the Critical Conduction Mode Boost Power
    Factor Correction Converter to Improve Zero-Crossing
    Distortion,” IEEE Power Electronics and Drive Systems,
    pp.1542-1546, Nov. 2005.
    [11] Laszlo Huber, Brian T. Irving, Claudio Adragna, and
    Milan M. Jovanović, “Implementation of Open-Loop
    Control for Interleaved DCM/CCM Boundary Boost PFC
    Converters,” IEEE Applied Power Electronics Conference
    and Exposition, pp. 1010-1016, Feb. 2008.
    [12] Laszlo Huber, Brian T. Irving, and Milan M.
    Jovanović, “Closed-Loop Control Methods for
    Interleaved DCM/CCM Boundary Boost PFC Converters,”
    IEEE Applied Power Electronics Conference and
    Exposition, pp. 991-997, Feb. 2009.
    [13] Laszlo Huber, Brian T. Irving, and Milan M.
    Jovanovic´, “Open-Loop Control Methods for Interleaved
    DCM/CCM Boundary Boost PFC Converters,” IEEE Trans. on
    Power Electronics, vol. 23, no. 4, pp. 1649-1657, July
    2008.
    [14] E. Firmansyah, S. Abe, M. Shoyama “A Critical-
    Conduction-Mode Bridgeless Interleaved Boost Power
    Factor Correction: Its Control Scheme Based on
    Commonly Available Controller,” IEEE Power Electronics
    and Drive Systems, pp.109-114, Nov. 2009.
    [15] Bing Lu, “A Novel Control Method for Interleaved
    Transition Mode PFC,” IEEE Applied Power Electronics
    Conference and Exposition, pp. 697-701, Feb. 2008.
    [16] Armando Olmos-López, Gerardo Guerrero, Jaime Arau,
    Carlos Aguilar, Juan C. Yris, “Passivity-Based Control
    for Current Sharing in PFC Interleaved Boost
    Converters,” IEEE Applied Power Electronics Conference
    and Exposition, pp. 475-480, Mar. 2011.
    [17] H. G. Lei, X. J. Yang, H. L. Miao, P. S. Ye, “Power
    Switch Driving Techniques in Single-Phase Dual-
    Parallel Interleaved Boost PFC,” IEEE Power
    Electronics and Drive Systems, vol. 2, pp.1086-1089,
    Nov. 2003.
    [18] T. W. Heo, Y. D. Son, E. Santi, “Analysis of the
    Interleaved Type Power Factor Correction (PFC)
    Converter in Discontinuous Current Mode,” proc.
    Industrial Electronics, Control can Instrument Conf.,
    vol. 3, pp. 2706-2711, Nov. 2004.
    [19] Hangseok Choi, “Novel Adaptive Master-Slave Method for
    Interleaved Boundary Conduction Mode (BCM) PFC
    Converters,” IEEE Applied Power Electronics Conference
    and Exposition, pp. 36-41, Feb. 2010.
    [20] J.-R. Tsai, T.-F. Wu, Y.-M. Chen and M.-C.
    Lee “Interleaved Control Schemes for Critical-Mode
    Boost PFC,” IEEE Power Electronics Specialists
    Conference, 2007, pp.2905-2911, Jun. 2007.
    [21] Laszlo Huber, Brian T. Irving, and Milan M.
    Jovanovi´c, “Review and Stability Analysis of PLL-
    Based Interleaving Control of DCM/CCM Boundary Boost
    PFC Converters,” IEEE Trans. Power Electronics, vol.
    24, no. 8, pp 1992-1999, Aug. 2009.
    [22] Jose R. Pinheiro, Hilton A.Griindling, Dalton
    L.R.Vidor and JosC E. Baggio, “Control Strategy of an
    Interleaved Boost Power Factor Correction Converter,”
    IEEE Power Electronics Specialists Conference, vol. 1,
    pp. 137-142, Aug. 1999.
    [23] J. R. Tsai, T. F. Wu, C. Y. Wu, Y. M. Chen, M. C.
    Lee, “Interleaving Phase Shifters for Critical-Mode
    Boost PFC,” IEEE Trans. on Power Electronics, vol. 23,
    no. 3, pp. 1348-1357, May 2008.
    [24] T. F. Wu, J. R. Tsai, Y. M. Chen and Z. H.
    Tsai, “Integrated Circuits of a PFC Controller for
    Interleaved Critical-Mode Boost Converters,” IEEE
    Applied Power Electronics Conference, pp. 1347-1350,
    Feb. 2007.
    [25] X. J. Xu, W. Liu, Alex Q. Huang, “Two-Phase
    Interleaved Critical Mode PFC Boost Converter with
    Closed Loop Interleaving Strategy,” IEEE Trans. on
    Power Electronics, vol. 24, no. 12, pp. 3003-3013,
    Dec. 2009.
    [26] Michael S. Elmore, “Input Current Ripple Cancellation
    in Synchronized, Parallel Connected Critically
    Continuous Boost Converters,” IEEE Applied Power
    Electronics Conference and Exposition, vol. 1, pp. 152-
    158, Mar. 1996.
    [27] Takuya Ishii and Yoshio Mizutani, “Power Factor
    Correction Using Interleaving Technique for Critical
    Mode Switching Converters,” IEEE Power Electronics
    Specialists Conference, vol. 1, pp. 905-910, May 1998.
    [28] Brian T. Irving, Yungtaek Jang, and Milan M.
    Jovanovic, “A Comparative Study of Soft-Switched CCM
    Boost Rectifiers and Interleaved Variable-Frequency
    DCM Boost Converters Rectifier,” IEEE Applied Power
    Electronics Conference and Exposition, vol. 1, pp. 171-
    177, Mar. 2000.
    [29] X. J. Xu, Alex Q. Huang, “A Novel Closed Loop
    Interleaving strategy of Multiphase Critical Mode
    Boost PFC Converters,” IEEE Applied Power Electronics
    Conference and Exposition, pp. 1033-1038, Feb. 2008.
    [30] A. Jansen, “Master-Slave Critical Conduction Mode
    Power Converter,” U.S. Patent Application
    2006/0077604, Apr. 13, 2006.
    [31] D. Johns and K. Martin, Analog Integrated Circuit
    Design, John Wiley & Sons, 1997.
    [32] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS: Circuit
    Design, Layout, and Simulation, IEEE Press, 1998.
    [33] B. Razavi, Design of Analog CMOS Integrated Circuits,
    McGraw-Hill, 2001.
    [34] R. Gregorain, Introduction to CMOS OP-Amps and
    Comparators, John Wiley & Sons, 1999.

    下載圖示 校內:2017-08-10公開
    校外:2017-08-10公開
    QR CODE