簡易檢索 / 詳目顯示

研究生: 何宇格
He, Yu-Ge
論文名稱: 電沉積鈀銀合金薄膜及甲醇電氧化催化之應用
Co-electrodeposition of Pd-Ag alloy thin film and its catalytic application in methanol electro-oxidation
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 104
中文關鍵詞: 電沉積鈀銀合金薄膜氧化還原置換甲醇電氧化
外文關鍵詞: PdAg alloy film, electrodeposition, redox replacement, methanol oxidation
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用定電位電沉積的方式,於含有銦錫氧化物的導電玻璃上製備鈀銀合金薄膜,並將該合金薄膜應用於甲醇電氧化催化上。製備的方式有改變電鍍液中鈀、銀離子的比例、電沉積電位、錯合劑三乙醇胺濃度與氧化還原置換反應將合金中銀原子置換,修飾上鈀原子。並利用X光粉末繞射儀(XRD)、能量分散式光譜儀(EDS)、掃描式電子顯微鏡(SEM)與循環伏安法(CV)分別分析其結構、組成、形貌與催化效率等。
    根據甲醇電氧化催化效率量測結果,於沉積電位-0.3 V下所製備之鈀銀合金催化效率優於純鈀並且優於其他沉積電位製備之合金。添加三乙醇胺後薄膜與基材的附著性與薄膜均勻性皆有所提升,同時X光粉末繞射儀分析顯示,電鍍液中添加三乙醇胺後製備之鈀銀合金粒徑有變小的現象,對於合金粒子的表面積具有增大的效果,在催化效率上提升約25 %。電鍍液中添加三乙醇胺之鈀銀合金薄膜,藉由氧化還原置換步驟,將合金表面以鈀原子修飾後,其鈀銀合金於催化效率上較未置換前提升約14 %,而該合金之銀含量達24.45 %,是本實驗甲醇電氧化催化效率最佳的鈀銀合金比例。

    In this study, PdAg alloy thin film was fabricated by the method of co-electrodeposition on an ITO coated glass(PdAg/ITO) and investigated its application in electro-oxidation of methanol. The parameters include: individual ion concentration, deposition potential, concentration of triethanolamine(TEA) and Pd redox replacement. Redox replacement is replaced by Pd on the surface of as-prepared PdAg alloy film. The morphologies, composition, phase structures and catalytic efficiency of PdAg alloy were examined by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS),X-ray diffraction(XRD) and cyclic voltammogram(CV).
    We found that -0.3 V was the most suitable potential for deposition of PdAg alloy film, exhibits higher catalytic activity on methanol oxidation compared with pure Pd catalyst.
    Adding triethanolamine in the electrolytes, PdAg alloy film may be more homogeneous and better adhesion with ITO. X-ray diffraction showed that the particle size of PdAg alloy deposit shrinks when the electroplating bath contained complexing agnet, triethanolamine. The decrease in particle size was beneficial to the increase of surface area of alloys. After adding, the catalytic efficiency was 25% higher than solution without TEA. Through Pd redox replacement, the alloy surface could be modified by Pd atom and the catalytic efficiency was about 14% higher than previous. This PdAg alloy with atomic ratio of 24.45% Ag owns the best catalytic efficiency in this study.

    摘要 I Extend abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1燃料電池 1 1-1-1燃料電池的演進 1 1-1-2運作原理 2 1-1-3燃料電池的優點 3 1-1-4燃料電池的種類 4 1-2 直接甲醇燃料電池(DMFCs) 6 1-2-1介紹 6 1-2-2主要構造 7 1-2-3反應原理 8 1-2-4極化現象 9 1-2-5甲醇氧化機制 11 1-3 研究動機與目的 12 第二章 實驗原理 14 2-1 電催化原理 14 2-1-1電催化反應介紹 14 2-1-2電催化甲醇反應機制 15 2-2 實驗原理 18 2-2-1 Underpotential deposition(UPD) 18 2-2-2 Surface-Limited Redox Replacement (SLRR) 20 2-3 儀器原理 20 2-3-1循環伏安法(Cyclic voltammetry,CV) 20 2-3-2定電位電解法(Chronoamperometry,CA) 22 2-3-3 X-射線繞射分析(X-ray Diffractometer,XRD) 23 2-3-4能量分散式光譜分析儀(Energy Dispersive Spectroscopy,EDS) 24 2-3-5掃描式電子顯微鏡( Scanning Electron Microscopy,SEM) 25 第三章 實驗方法與步驟 26 3-1實驗流程圖 26 3-2實驗藥品與儀器 27 3-3實驗方法與步驟 28 3-3-1三電極式反應槽裝置 28 3-3-2電鍍液配置 29 3-3-3電沉積PdAg合金 29 3-3-4薄膜性質量測 30 第四章 結果與討論 31 4-1 沉積電位影響鈀銀合金薄膜之探討 31 4-1-1鈀、銀溶液之循環伏安法分析 31 4-1-2 XRD 37 4-1-3 PdAg合金組成分析 43 4-1-4 PdAg合金形貌分析 44 4-1-5甲醇電氧化(methanol oxidation reaction) 51 4-2錯合劑TEA濃度影響鈀銀合金薄膜之探討 57 4-2-1介紹 57 4-2-2循環伏安法分析 57 4-2-3 XRD 60 4-2-4 PdAg合金組成分析 64 4-2-5 PdAg合金形貌分析 65 4-2-6甲醇電氧化 71 4-3沉積電量影響鈀銀合金薄膜之探討 73 4-3-1介紹 73 4-3-2 XRD 73 4-3-3 PdAg合金組成分析 81 4-3-4 PdAg合金形貌分析 82 4-3-5甲醇電氧化 86 4-4 PdAg合金置換反應(surface-limited redox replacement) 88 4-4-1 PdAg置換反應介紹 88 4-4-2置換時間之影響 90 4-4-3 XRD 92 4-4-4 PdAg合金組成分析 93 4-4-5 PdAg合金形貌分析 94 4-4-6 甲醇電氧化 96 第五章 結論 97 參考文獻 100 附錄 103

    [1] J. Larminie, Fuel Cell Systems Explained. John Wiley & Sons Ltd(2003).
    [2] 林彥均, 奈米複合觸媒於質子交換型燃料電池之應用. 國立中央大學碩士論文(2006).
    [3] 楊志忠, 林頌恩, and 韋文誠, 科學發展, vol. 367, p. 30 (2003).
    [4] 衣寶廉, 燃料電池-原理與應用. 五南圖書(2005).
    [5] 左峻德, 燃料電池之特性與運用. 科資中心(2001).
    [6] 黃鎮江, 燃料電池. 全華科技(2005).
    [7] 旗威科技 and 勝光科技, 新能源時代之DMFC 直接甲醇燃料電池 原理、應用與實作. 旗標出版(2006).
    [8] N. Hashim, S. K. Kamarudin, and W. R. W. Daud, International Journal of Hydrogen Energy, vol. 34, pp. 8263-8269 (2009).
    [9] H. Liu and J. Zhang, Electrocatalysis of Direct Methanol Fuel Cells From Fundamentals to Applications. WILEY-VCH(2009).
    [10] A. K. Shukla and R. K. Raman, Annual Review of Materials Research, vol. 33, pp. 155-168 (2003).
    [11] M. Naraghi, Carbon Nanotubes - Growth and Applications: InTech (2011).
    [12] J. S. Spendelow and A. Wieckowski, Physical Chemistry Chemical Physics, vol. 9, pp. 2654-2675 (2007).
    [13] J. M. Tatibougt, Applied Catalysis A: General, vol. 148, pp. 213-252 (1997).
    [14] D. Pletcher, R. Greff, R. Peat, L. M. Peter, and J. Robinson, Instrumental Methods in Electrochemistry. Elsevier(2001).
    [15] Z. Yin, M. Chi, Q. Zhu, D. Ma, J. Sun, and X. Bao, Journal of Materials Chemistry A, vol. 1, p. 9157 (2013).
    [16] J. M. Fisher, N. Cabello-Moreno, E. Christian, and D. Thompsett, Electrochemical and Solid-State Letters, vol. 12, p. B77 (2009).
    [17] S. Tominaka, T. Momma, and T. Osaka, Electrochimica Acta, vol. 53, pp. 4679-4686 (2008).
    [18] C. Qiu, X. Dong, M. Huang, S. Wang, and H. Ma, Journal of Molecular Catalysis A: Chemical, vol. 350, pp. 56-63 (2011).
    [19] C. J. Cao, X. G. Liu, and Q. Liu, Advanced Materials Research, vol. 785-786, pp. 390-394 (2013).
    [20] L.-H. Jou, J.-K. Chang, T.-J. Whang, and I. W. Sun, J. Electrochem. Soc, vol. 157, p. D443 (2010).
    [21] M.-W. Hsieh and T.-J. Whang, Applied Surface Science, vol. 270, pp. 252-259 (2013).
    [22] C.-C. Tai, F.-Y. Su, and I. W. Sun, Electrochimica Acta, vol. 50, pp. 5504-5509 (2005).
    [23] Q. Wang, J. Zheng, and H. Zhang, Journal of Electroanalytical Chemistry, vol. 674, pp. 1-6 (2012).
    [24] L. Li, M. Chen, G. Huang, N. Yang, L. Zhang, H. Wang., Journal of Power Sources, vol. 263, pp. 13-21 (2014).
    [25] 王俊傑, 黃士杰, 李穎弦, 楊汶釗, and 林修正, 化工, vol. 56, (2009).
    [26] H. A, Gasteiger, N. M. P. N, J. Ross, and E. J. Cairns, J. Electrochem. Soc, vol. 141, pp. 1795-1803 (1994).
    [27] P. M. Urban, A. Funke, J. T. Muller, M. Himmen, and A. Docter, Applied Catalysis A: General, vol. General 221, pp. 459-470 (2001).
    [28] R. Parsons and T. VanderNoot, J. Electroanal. Chem, vol. 257, (1988).
    [29] K. Chandrasekaran, J. C. Wass, and J. O. M. Bockris, J. Electrochem. Soc, vol. 137, pp. 518-524 (1990).
    [30] M. Watanabe and S. Motoo, Electroanalytical Chemistry and lnterfacial Electrochemistry, vol. 60, pp. 275-283 (1975).
    [31] J. C., Davies, B. E., Hayden, and D. J. Pegg, Electrochimica Acta, vol. 44, (1998).
    [32] C. Roth, A. J. Papworth, I. Hussain, R. J. Nichols, and D. J. Schiffrin, Journal of Electroanalytical Chemistry, vol. 581, pp. 79-85 (2005).
    [33] V. Ponec, Applied Catalysis A: General, vol. General 222, (2001).
    [34] A. S. Aricò, S. Srinivasan, and V. Antonucci, Fuel Cells, vol. 1, pp. 133-161 (2001).
    [35] A. K. Shukla and K. V. Ramesh, Chemistry of Materials, vol. 1, pp. 391-398 (1989).
    [36] J. C. Davies, J. Bonde, Á. Logadóttir, J. K. Nørskov, and I. Chorkendorff, Fuel Cells vol. 5, p. 429 (2005).
    [37] E. Herrero, L. J.Buller, Hector. D., and Abrun, Chem. Rev, vol. 101, pp. 1897-1930 (2001).
    [38] D. M. Kolb, M. Przasnyski, and H. Gerischer, Electroanalyttcal Chemtstry and Interfacial Electrochemistry, vol. 54, pp. 25-38 (1974).
    [39] H. B. Michaelson, Journal of Applied Physics, vol. 48, p. 4729 (1977).
    [40] L. T. Viyannalage, R. Vasilic, and N. Dimitrov, Journal of Physical Chemistry C, vol. 111, pp. 4036-4041 (2007).
    [41] J. Nutariya, M. Fayette, N. Dimitrov, and N. Vasiljevic, Electrochimica Acta, vol. 112, pp. 813-823 (2013).
    [42] B. Coq and F. Figueras, Journal of Molecular Catalysis A: Chemical, vol. 173, pp. 117-134 (2001).
    [43] S. R. Brankovic and J. Wang, Surface Science, vol. 474, pp. L173-L179 (2001).
    [44] 胡啟章, 電化學原理與方法. 五南圖書(2002).
    [45] D. C. Harris, Quantitative Chemical Analysis: W. H. Freeman (2006).
    [46] 楊曉菁, 硫氧化物及聚賽吩衍生物在金、鉑電極上之研究. 國立中央大學碩士論文(2003).
    [47] 汪建民, 材料分析. 中國材料科學學會(1998).
    [48] 林麗娟, 工業材料, vol. 86, pp. 100-109 (1994).
    [49] J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin., Scanning Electron Microscopy and X-ray Micronalysis. New York: Plenum Press(2003).
    [50] B. Tao, J. Zhang, S. Hui, X. Chen, and L. Wan, Electrochimica Acta, vol. 55, pp. 5019-5023 (2010).
    [51] C. S. Sharma, R. Awasthi, R. N. Singh, and A. S. Sinha, Physical Chemistry Chemical Physics, vol. 15, pp. 20333-20344 (2013).
    [52] D. R. Lide, CRC Handbook of Chemistry and Physics: CRC Press, Boca Raton (2005).
    [53] A. L. Patterson, Physical Review, vol. 56, pp. 978-982 (1939).
    [54] A. R. Denton and N. W. Ashcroft, Physical Review A, vol. 43, pp. 3161-3164 (1991).
    [55] M. R. Bauer, J. Kouvetakis, and A. V. G. Chizmeshya, Chemistry of Materials, vol. 15, p. 2511 (2003).
    [56] Z.-Y. Shih, C.-W. Wang, G. Xu, and H.-T. Chang, Journal of Materials Chemistry A, vol. 1, pp. 4773-4778 (2013).

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE