| 研究生: |
崔子信 Tsuei, Tz-Shin |
|---|---|
| 論文名稱: |
微機電慣性量測元件之誤差補償實現於車輛導航之研究 Error Compensation of MEMS Based IMU and its Application in Vehicle Navigation |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 整合導航系統 、卡爾曼 、誤差補償 |
| 外文關鍵詞: | Error model, Kalman Filter, GPS/INS |
| 相關次數: | 點閱:110 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前全球衛星定位系統 (GPS) 已被廣泛應用在車輛導航上。但是GPS訊號容易被遮蔽使得導航發生困難,為了克服這個限制,慣性量測元件(Inertial Measurement Unit)與導航演算法將與GPS接收機整合。現行的GPS/INS整合導航演算法中,一般的做法是使用擴展型卡爾曼濾波器(Extended Kalman Filter)根據GPS及IMU的量測量估算載具的位置及速度。當GPS中斷時,使用INS估算正確的位置、速度及姿態,然而長時間失去GPS訊號時,導航解有可能發散,因此本論文研究的目標為即時估算加速規偏置量(Accelerometer Bias)及陀螺儀漂移量(Gyro Drift)以減緩發散的議題,以確保定位的精準度。
Nowadays, GPS has been applied to vehicle navigation extensively. But the GPS signal is easy to be obstructed, which may make the navigation difficult. In order to overcome this limitation, inertial measurement units with navigation algorithm have been used to integrate with GPS receivers. Existing GPS/INS integration navigation algorithm typically use the Extended Kalman Filter (EKF) to estimate vehicle position and velocity based on GPS and IMU measurements. When GPS is outage, the corrected position, velocity, and attitude estimated from INS can be used. However, the navigation solution may be subject to divergence after GPS signal is lost for a significant period of time. The objective of the thesis is to estimate the accelerometer bias and gyro drift in real time so as to mitigate the divergence issue and guarantee the accuracy of positioning.
[1]Chatfield, Fundamentals of High Accuracy Inertial Navigation, American Institute of Aeronautics and Astronautics, 1997.
[2]D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, Institution of Electrical Engineers, 1997.
[3]E.-H. Shin, Accuracy Improvement of Low cost INS/GPS for Land Applications, Master Thesis, University of Calgary Department of Geomatics Engineering, 2001.
[4]E.-J. Song, J.-Y. Kim, J._S. Oh, and W.-R. Roh, “Error Analysis of the Ground Based Navigation Test Using Extended Kalman Filtering,” Proceedings of the IEEE International Conference on Control, Automation and Systems, pp 511-516, 2007.
[5]J. B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press, 1999.
[6]K. R. Britting, Inertial Navigation Systems Analysis, John Wiley and Sons, Inc, 1971.
[7]L. Zhao, W. Y. Ochieng, M. A. Quddus, and R. B. Noland, “An Extended Kalman Filter Algorithm for Integrating GPS and Low Cost Dead Reckoning System Data for Vehicle Performance and Emissions Monitoring,” The Journal of Navigation, The Royal Institute of Navigation, pp 257-275, 2003.
[8]M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice Using Matlab, Third Edition, John Wiley and Sons, Inc.,2008.
[9]M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, John Wiley and Sons, Inc, 2001.
[10]N. H. Q. Phuong, H.-J. Kang, Y.-S. Suh, and Y.-S. Ro, “A GPS/INS Integration System for Land Vehicle Application,” Proceedings of the IEEE SICE-ICASE International Joint Conference, pp 482-487, 2006.
[11]O. S. Salychev, Applied Inertial Navigation: Problems and Solutions, BMSTU Press Moscow, Russia, 2004.
[12]P. Wang, Y. Zhang, and W. Qiang, “Research on the Algorithm of Satellite On-orbit Calibration Based on GPS/Gyro,” Proceedings of the IEEE 6th World Congress on Intelligent Control and Automation, pp 4757-4760, 2006.
[13]R. M. Rogers, Applied Mathematics in Integrated Navigation System, American Institute of Aeronautics and Astronautics, 2000.
[14]R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley and Sons, Inc, 1997.
[15]S. Nassar, Improving the Inertial Navigation System(INS) Error Model for INS and INS_DGPS, Dr. Dissertation, The University of Calgary Department of Geomatics Engineering, 2003.
[16]T. Gao, Z. Gong, J. Luo, W. Ding and W. Feng, “An Attitude Determination System For A Small Unmanned Helicopter Using Low-Cost Sensors,” Proceedings of the IEEE 2006 International Conference on Robotics and Biomimetics, pp 1203-1208, 2006.
[17]X. Yun, E. R. Bachmann, and R. B. McGhee, “A Simplified Quaternion-Based Algorithm for Orientation Estimation Form Earth Gravity and Magnetic Field Measurements,” IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 3, pp 1-13, March 2008.
[18]王聖鋐,適應性模糊強跟蹤卡爾曼濾波器於導航系統之設計,國立台灣海洋大學通訊與導航工程學系碩士論文,2006。
[19]何欣遠,基於加速度與磁力量測應用至行人動作辨識之研究,國立成功大學電機工程學系碩士論文,2008。
[20]吳世驊,皮米級衛星姿態控制次系統之設計與實現,國立成功大學電機工程學系碩士論文,2006。
[21]林泳成,利用類神經網路發展混合式INS/GPS整合式定位及定向演算法之研究,國立成功大學測量及空間資訊學系碩士論文,2008。
[22]林計德,結合GPS與磁力/加速度感測元件於導航之研究,國立成功大學電機工程學系碩士論文,2007。
[23]侯建群,GPS/INS整合式導航系統研究,國立台灣大學應用力學研究所碩士論文,2006。
[24]黃俊凱,微機電感測器於地面車輛定位系統之應用,國立台灣科技大學機械工程學系碩士論文,2005。
[25]秦永元、張洪鋮、汪淑華,卡爾曼濾波與組合導航原理,西北工業大學,2004。
[26]莊智清、黃國興,電子導航,全華科技圖書股份有限公司,2001。
[27]陳建賓,GPS/GLONASS/INS 整合之探討,國立成功大學電機工程學系碩士論文,2001。
[28]陳明豐,低軌道衛星姿態估測演算法,國立台灣大學電機工程學系碩士論文,2002。
[29]陳志正,結合最佳化理論與神經網路於GPS/INS導航系統之設計,國立台灣海洋大學通訊與導航工程學系碩士論文,2006。
[30]趙益生,基於二維微機電慣性元件定位系統之初步研究,國立成功大學航空太空工程研究所碩士論文,2004。
[31]賴士堯,模糊強跟蹤無跡卡爾曼濾波器於整合導航之設計,國立台灣海洋大學通訊與導航工程學系碩士論文,2008。
[32]羅貽騂,利用UKF發展INS/GPS整合式定位演算法之評估,國立成功大學測量及空間資訊學系碩士論文,2007。