| 研究生: |
朱政彰 Jhu, Jheng-Jhang |
|---|---|
| 論文名稱: |
應用晶格波茲曼法在低雷諾數冪次型流體之熱對流分析 Application of Lattice Boltzmann Method to Simulate the Low-Reyonold number power-law fluid Convective Heat Transfer problem |
| 指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 晶格波茲曼法 、背向階梯 、熱傳 、非牛頓流體 |
| 外文關鍵詞: | Lattice Boltzmann method, Backward-facing step, Heat transfer, Non-Newtonian fluid |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非牛頓流體與我們的生產和生活息息相關,因此深入研究非牛頓流體有很大的實用價值。目前有很多種流體的數值模擬方法,但用晶格波茲曼方法處理非牛頓流體問題還沒有引起廣泛的關注。從工業上常見的流體問題背向階梯流場模擬入手,針對非牛頓流體各個特性進行研究和分析。
本文是使用D2Q9 模型來模擬背向階梯流場中的廣義非牛頓流體—冪律型流體,展開研究和分析牛頓流體、剪切變稀流和剪切增稠流三種不同類型流體之間的速度場和溫度場。
首先,選取一個範圍內一系列的參數,例如:冪次指數、雷諾數、普朗特數、階梯擴張比,來分析剪切變稀流和剪切增稠流的流動情形和溫度分布隨參數的變化。之後在流道中置入方形柱體障礙物,其中柱體障礙物在流場中扮演擾動的角色,改變了物體的流線方向,且在障礙物後側形成環狀迴流區影響通過的流體進而改變部區域內的熱傳,而選取不同冪次指數n值,造成黏度的變化,而流動現象和溫度變化也越複雜。
While there is close relationship between non-Newtonian fluids and our poduction and living .Thus further study of non-newtonian fluid has great practical value. We know, there are a variety of fluid numerical simulation method for research, but the method using lattice Boltzmann for non-newtonian fluid problem hasn't caused wide spread concern. By simulating the general problems of backward-facing step fluids in industry. Then analyzing the properties of non-Newtonian fluids.
In this paper with D2Q9 model to simulate a generalized non-Newtonian power-law backward-facing step fluids, we mainly used to study and analysis different types of flow phenomena among Newtonian fluids and shear thinning fluids and shear thickening fluids.
Firstly, selecting a range of parameters like power-law index numbers, Reynold number, Prandtl number, and ER number. Then we can compare and analysis flow phenomena of shear thinning fluids and shear thickening fluids when the parameters changes . The built-in obstacle in channel include square cylinder, and the cylinder obstacle plays the role of causing interruption within the fluid field. The direction of fluid flow toward was changed by cylinder obstacle, and the recirculation region formed behind cylinder obstacle influence the fluid pass through. As mentioned above, heat transfer was different in local region. For choosing different power-law indexes causes the viscosity changed. And the flow phenomenon and variation of temperature become more complex.
Aboueian-Jahromi, Jaber., & Nezhad, Alireza Hossein., & Behzadmehr, Amin., “Effects of inclination angle on the steady flow and heat transfer of power-law fluids around a heated inclined square cylinder in a plane channel”, J. Non-Newtonian Fluid Mech., Vol.166, pp. 1406–1414, 2011.
Abbassi, Hassen, Said., & Nasrallah, Sassi Ben., “Numerical investigation of forced convection in a plane channel with a built-in triangular prism”, Int. J. Therm. Sci., Vol. 40, pp. 649-658, 2001.
Alexander, F. J., & Chen, S., & Stering, J. D., “Lattice Boltzmann thermohydrodynamics”, Phys. Rev. E, Vol. 47, pp. R2249-2252, 1993.
Aharonov, E., & Rothman, DH.,“Non-Newtonian flow (through porous media): a lattice Boltzmann method”, Geophy. Res. Lett., Vol. 20, pp. 679-682, 1993.
Armaly, B. F., & Durst, F., & Pereira, J. C. F., & Schonung, B., “Experinmental and theoretical investigation of backward-facing step flow”, Journal of Fluid Mechanics, Vol.127, pp. 473-496, 1983.
Aung,W.,“An Experimental-Study of Laminar Heat-Transfer downstream of Backstep”, Journal of Heat Transfer-Transactions of the Asme, Vol.105(4), pp. 823-829, 1983.
Boyd, J.,& Buick, J.,& Green, S., “A second-order accurate lattice Boltzmann non-Newtonian flow model”, Journal of Physics a-Mathematical and General,Vol.39(46), pp. 14241-14247, 2006.
Breuer, M., & Bernsdorf, J., & Zeiser, T., & Durst, F., “Accurate computations of the laminar flow past a square cylinder based on two different method: lattice-Boltzmann and finite-volume”, Int. J. Heat Fluid Flow., Vol. 94(3), pp. 511-525, 2000.
Chen, Yong-Li.,& Cao, Xu-Dong., & Zhu, Ke-Qin., “A gray Lattice Boltzmann Model for power-law fluid and its application in the study of slip velocity at porous interface”, J. Non-Newtonian Fluid Mech.,Vol.159, pp. 130-136, 2009.
Chen, Chao-Kuang, & Yen, Tzu-Shuang, & Yang, Yue-Tzu, “Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 49(5-6), pp. 1195-1204, 2006.
Chakraborty, Jyoti, & Verma, Nishith, & Chhabra, R. P., “Wall effects in flow past a circular cylinder in a plane channel: a numerical study”, Chem. Eng. Process., Vol. 43, pp. 1529-1537, 2004.
Chen, Shiyi, & Doolen, Gary D., “Lattice Boltzmann model for fluid flows”, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364, 1998.
Chen, Shiyi, & Martinez, Daniel, “On boundary condition in lattice Boltzmann methods”, Phys. Fluids, Vol. 8(9), pp. 2527-2536, 1996.
Chen, Hudong, & Chen, Shiyi, & Matthaeus, William H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A, Vol. 45, pp. R5339-5342, 1992.
Dhiman, A. K., “Heat transfer to power-law dilatant fluids in a channel with a built-in square cylinder”, International Journal of Thermal Sciences., Vol. 48, pp. 1552-1563, 2009.
Dhimana, A.K.,& Chhabra, R.P.,& Eswaran, V.,“Steady flow across a confined square cylinder: Effects of power-law index and blockage ratio ”, J. Non-Newtonian Fluid Mech.,Vol.148, pp. 141-150, 2008.
Dhiman, A. K., & Chhabra, R. P., & Eswaran, V., “Heat transfer to power-law fluids from a heated square cylinder”,Numer. Heat Tranf. A-Appl.,Vol.52(2), pp. 185-201, 2007.
Dieter, A. Wolf-Gladrow, “Lattice-gas cellular autimata and lattice Boltzmann models”, Springer, Germany, 2000.
Dalessio, S. J. D., & Pascal, J. P., “Steady flow of a power-law fluid past a cylinder”, Acta Mechanica,Vol.117(1-4), pp. 87-100, 1996.
d’Humiéres, D., & Lallemand, P., “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions”, Complex Systems, Vol. 1, pp. 599-632, 1987.
Filippova, Olga, & Hänel, Dieter, “Grid refinement for lattice-BGK models”, J. Comput. Phys., Vol. 147(1), pp. 219-228, 1998.
Gupta, A. K., & Sharma, A., & Chhabra, R. P., & Eswaran, V., “Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: Momentum and heat-transfer characteristics”, Industrial & Engineering Chemistry Research., Vol. 42(22), pp. 5674-5686, 2003.
Gupta, Abhishek K., & Sharma, Atul, & Chhabra, Rajendra P., & Eswaran, Vinayak, “Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: Momentum and heat-transfer characteristics”, Ind. Eng. Chem. Res., Vol. 42, pp. 5674-5686, 2003.
Guo, Zhaoli, & Zhao, T. S., “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, Vol. 66, pp. 036304, 2002.
Guo, Zhaoli, & Zheng, Chuguang, “An extrapolation method for boundary conditions in lattice Boltzmann method”, Phys. Fluids, Vol. 14(6), pp. 2007-2010, 2002.
Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, “A lattice Boltzmann model for multiphase fluid flows”, Phys. Fluids A, Vol. 5(10), pp. 2557-2562, 1993.
He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., “A novel thermal model for the lattice Boltzmann in incompressible limit”, J. Comput. Phys., Vol. 146, pp. 282-300, 1998.
He, Xiaoyi, & Luo, Li-Shi, “Lattice Boltzmann model for the incompressible Navier-Stokes equation”, J. Stat. Phys., Vol. 88(3/4), pp. 927-944, 1997.
Hou, Shuling, & Zou, Qisu, “Simulation of cavity flow by the lattice Boltzmann method” , J. Comput. Phys., Vol. 118, pp. 329-347, 1995.
Higuera, F. J., & Jiménez, J., “Boltzmann approach to lattice gas simulations”, Europhys. Lett., Vol. 9(7), pp. 663-668, 1989.
Higuera, F. J., & Succi, S., & Benzi, R., “Lattice gas dynamics with enhanced collisions”, Europhys. Lett., Vol. 9(4), pp. 345-349, 1989.
Huang, Kerson, “Statistical mechanics”, John Wiley & Sons, 1987.
Incropera, Frank P., & DeWitt, David P. , “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 2002.
Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, “A non-slip condition for lattice Boltzmann simulattion”, Phys. Fluids, Vol. 7(12), pp. 2928-2930, 1995.
Khan, W. A.,& Culham, J. R.,& Yovanovich, M. M., “Fluid flow and heat transfer in power-law fluids across circular cylinders: Analytical study”, Journal of Heat Transfer-Transactions of the Asme,Vol.128(9), pp. 870-878, 2006.
Korichi, Abdelkader, & Oufer, Lounes, “Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls”, Int. J. Therm. Sci., Vol. 44, pp. 644-655, 2005.
Kondoh, T.,& Nagano, Y.,& Tsuji, T., “Computational study of laminar heat-transfer downstream of a backward-facing step”, International Journal of Heat and Mass Transfer,Vol.36(3), pp. 577-591, 1993.
Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., “Application of lattice Boltzmann model to simulate microchannel flows”, Physics of Fluids, Vol. 14(7), pp. 2299-2308, 2002.
Manica, R., & De Bortoli, A.L., “Simulation of sudden expansion flows for power-law fluids”, J. Non-Newtonian Fluid Mech.,Vol.121, pp. 35-40, 2001.
Mei, Renwei, & Luo, Li-Shi, “An Accurate curved boundary treatment in the lattice Boltzmann method”, J. Comput. Phys., Vol. 155, pp. 307-330, 1999.
Munson, Bruce R., & Young, Donald F., & Okiishi, Theodore H., “Fundamentals of fluid mechanics”, Wiley, New York, 1998.
McNamara, Guy R., & Zanetti, Gianluigi, “Use of the Boltzmann equation to simulate lattice-gas automata”, Physical Review Letters, Vol. 61(20), pp. 2332-2335, 1988.
Nejat, Amir.,& Abdollahi, Vahid.,& Vahidkhah, Koohyar., “Lattice Boltzmann simulation of non-Newtonian flows past confined cylinders ”, J. Non-Newtonian Fluid Mech., Vol. 166, pp. 689–697, 2011.
Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids, Vol. 7(1), pp. 203-209, 1995.
Phillips, T. N.,& Roberts, G. W., “Lattice Boltzmann models for non-Newtonian flows”,ImaJournalofApplied Mathematics.,Vol.76, pp. 790-816, 2011.
Panda, Saroj K., & Chhabra, R.P., “Laminar flow of power-law fluids past a rotating cylinder“, J. Non-Newtonian Fluid Mech.,Vol.165, pp. 1442–1461, 2010
Paliwal, B., & Sharma, A., & Chhabra, R. P., & Eswaran, V., “Power law fluid flow past a square cylinder: momentum and heat transfer characteristics”,Chemical Engineering Science,Vol.58(23-24), pp. 5315-5329, 2003.
Peng, Y., & Shu, C., & Chew Y. T., “Simplified thermal lattice Boltzmann model for incompressible thermal flows”, Phys. Rev. E, Vol. 68, pp. 026701, 2003.
Qian, Y. H., & d’Humiéres, D., & Lallemand, P., “Lattice BGK models for Navier-Stokes equation”, Europhy. Lett., Vol. 17(6), pp. 479-484, 1992.
Sahua, Akhilesh K., & Chhabraa, R.P., & Eswaranb, V.,“Two-dimensional laminar flow of a power-law fluid across a confined square cylinder”, J. Non-Newtonian Fluid Mech.,Vol.165, pp. 752-763, 2010.
Sahu, A. K.,& Chhabra, R. P., Eswaran, V., “The Effect of a Blockage on Forced Convection Heat Transfer From a Heated Square Cylinder to Power-LawFluids”, Numer. Heat Tranf. A-Appl.,Vol.58, pp. 641-659, 2010.
Soares, A. A.,& Ferreira, J. M.,& Chhabra, R.P., “Flow and forced convection heat transfer in crossflow of non-Newtonian fluids over a circular cylinder”,Industrial & Engineering Chemistry Research,Vol.44(15), pp. 5815-5827, 2005
Sharma, A.,& Eswaran, V., “Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime”, Numer. Heat Tranf. A-Appl.,Vol.45, pp. 247-269, 2004.
Sullivan, S.P., & Gladden, L.F., & Johns, M.L.,“Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques”, J. Non-Newtonian Fluid Mech.,Vol.133, pp. 91-98, 2002.
Shu, C., & Niu, X. D., & Chew, Y. T., “Taylor-series expansion and least-square-based lattice Boltzmann model: Two dimensional fprmulational and its application”, Phys. Rev. E, Vol. 65, pp. 036708, 2002.
Shu, C., & Peng, Y., & Chew, Y. T., “ Simulation of natural convection in a square cavity by Taylor series expansion and least-square-based lattice Boltzmann method”, Int. J. Mod. Phys. C, Vol. 13, pp. 1399-1414, 2002.
Succi, S., “The lattice Boltzmann equation for fluid dynamics and beyond”, Oxford university press, New York, 2001.
Succi, S., & Vergassola, M., & Benzi, R., “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics”, Phys. Rev. A, Vol. 43(8), pp. 4521-4524, 2001.
Shan, Xiaowen, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method”, Phys. Rev. E, Vol. 55, pp. 2780-2788, 1997.
Skordos, P. A., “Initial and boundary conditions for the lattice Boltzmann method”, Phys. Rev. E, Vol. 48(6), pp. 4823-4842, 1993.
Valencia, Alvaro, “Heat transfer enhancement in a channel with a built-in square cylinder”, Int. Commun. Heat Mass Transf., Vol. 22(1), pp. 47-58, 1995.
Yoshino, M., & Hotta, Y., & Hirozane, T., & Endob, M., “A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method”, J. Non-Newtonian Fluid Mech., Vol. 147, pp. 69–78, 2007.
Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation”, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.
Zou, Qisu, & He, Xiaoyi, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9(6), pp. 1591-1598, 1997.
王竹溪,「統計物理學導論」,凡異出版社,1985。
江孟璋,「應用FDLBM方法在高速進給熱傳系統之研究現象」,國立中正大學碩士論文,2003。
李國平,「二維方腔非牛頓流體格子Boltzmann 模擬,華中理工大學博士論文,2010。
吳大猷,「理論物理-熱力學、氣體運動及統計力學」,聯經出版社,1979。
祝玉學、趙學龍譯,「物理系統的元胞自動機模擬」,北京清華大學出版社,2003。
胡寬裕,「晶格波茲曼法於複雜幾何邊界之應用」,國立清華大學碩士論文,2003。
郭照立,「模擬不可壓縮流體流動的格子Boltzmann方法研究」,華中理工大學博士論文,2000。
張茗翔,「晶格波茲曼法在黏性流的計算」,國立成功大學碩士論文,2006。
楊志強,「以晶格波茲曼法模擬共軛熱傳」,國立中正大學碩士論文,2001。
顏子翔,「應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析」,國立成功大學博士論文,2006。