| 研究生: |
羅永 Lo, Yung |
|---|---|
| 論文名稱: |
基於PPG和加速度訊號之耳道式運動心律監測系統 An in-ear motion heart rate monitor based on photoplethysmography and acceleration signals |
| 指導教授: |
王振興
Wang, Jeen-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 光體積變化描記法(PPG) 、加速度 、動作雜訊 、運動心律監測 、頻譜 |
| 外文關鍵詞: | photoplethysmography(PPG), acceleration, motion artifacts(MA), motion heart rate monitor, frequency spectra |
| 相關次數: | 點閱:78 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文開發一套基於PPG和加速度頻譜之能量分析的運動心律偵測演算法,並將此演算法實現於Android手機以作為心律監測平台,結合方便攜帶之耳道式耳機型感測器,形成一套耳道式運動心律監測系統。本論文所開發之耳道式耳機型感測器利用PPG感測模組與加速度感測模組收集PPG和加速訊號,再藉由藍芽將訊號傳輸至Android心律監測平台,透過訊號運算過後,監測平台會呈現即時心律分析相關結果。其中心律之結果乃基於本論文開發之運動心律偵測演算法,此演算法的目的在於解決活動時動作雜訊對於PPG訊號的影響。於現有文獻中,大多使用不同數學工具或濾波器來消除PPG訊號裡的動作雜訊,有別於消除動作雜訊的方法,本論文開發新的一套PPG和加速度頻譜之能量分析的運動心律偵測演算法,探討PPG與加速度訊號於頻域能量本質與其變化的意義,應用於即時偵測人體長時間活動的心律。並透過實驗收案,驗證本論文之運動心律偵測演算法的準確度;本論文以判定係數R2及Bland-Altman ratio評估演算法偵測心律與實際結果之線性相關及一致性,其中當視窗長度10秒且視窗位移時間3~5秒時,R2大於0.85且Bland-Altman ratio小於0.1,有高度的線性相關與一致性,驗證此運動心律偵測演算法應用於偵測人體活動時的心律之可行性與有效性。
This thesis presents an in-ear motion heart rate monitoring system based on photoplethysmography (PPG) and acceleration signals. The system is composed of an in-ear headset sensor module and a heart rate monitoring application running on Android devices. The in-ear headset sensor module collects PPG and acceleration signals and transmits them to the heart rate monitoring application via Bluetooth transmission for motion heart rate detection. The heart rate monitoring application executes a motion heart rate detection algorithm that solves the problem that PPG signal is easily corrupted by motion artifacts (MA) when users are in motion. In existing research studies, most researchers used mathematical tools or filters to reduce MA in order to recover PPG signal for heart rate detection. In this paper, the proposed method for heart rate detection from MA corrupted PPG signals is to analyze the power change in the spectra of PPG and acceleration signals. This method can detect heart rate directly without conducting MA cancellation in corrupted PPG signals. Several experiments have been conducted to validate feasibility and effectiveness of the proposed method. The result indicates that the heart rate obtained by the proposed method and Electrocardiogram (ECG) signal are linearly correlated and in a high degree of consistency. Moreover, the error is also within 5% to achieve the minimum requirement of the system applied to heart rate detection of daily activities.
[1] N. E. Almond and E. D. Cooke, “Observations on photoplethysmograph pulse derived from a laser doppler flowmeter,” Clin. Phys. Physiol. Meas., pp. 137-145, 1989.
[2] H. H. Asada, H. H. Jiang, and P. Gibbs, “Active noise cancellation using MEMS accelerometers for motion-tolerant wearable bio-sensors,” Proc. Conf. IEEE. Eng. Med. Biol. Soc., vol. 1, pp. 2157-2160, 2004.
[3] U. R. Acharya, P. K. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate variability: a review,” IFMBE Journal of Medical & Biological Engineering & Computing Journal, pp. 1031-1051, 2006.
[4] J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet, vol. 1, pp.307-310, 1986.
[5] A. B. Barreto, L. M. Vicente, and I. K. Persad, “Adaptive cancellation of motion artifact in photoplethysmographic blood volume pulse measurements for exercise evaluation,” Proc. IEEE-EMBC/CMBEC, vol. 2, pp. 983-984., 1995.
[6] J. W. Cooley, and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. of Comput., vol. 19, pp. 297-301. April 1965.
[7] A. V. J. Challoner, “Photoelectric plethysmography for estimating cutaneous blood flow,” in Non-invasive physiological measurements, P. Rolfe, ed. (Academic, London), vol. 1, pp. 125-151, 1979.
[8] G. W. Comtois, “Implementation of accelerometer-based adaptive noise cancellation in a wireless wearable pulse oximeter platform for remote physiological monitoring and triage,” Diss. WORCESTER POLYTECHNIC INSTITUTE, 2007.
[9] J. Y. A. Foo, “Comparison of wavelet transformation and adaptive filtering in restoring artefact-induced time-related measurement,” Biomed. Signal Process. Control, vol. 1, no. 1, pp.93-98, 2006.
[10] S. C. Gates, “Peak detection,” in Laboratory Automation Using the IBM PC. Englewood Cliffs, NJ: Prentice Hall, pp. 188-209, 1989.
[11] J. B. Goodman, “Physiological signal monitoring system,” USA: Vitalsines International, Inc., 2003
[12] A. B. Hertzman and C. R. Spielman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol., pp. 334-335, 1937.
[13] K. M. Hume and J. Crossman, “Musical reinforcement of practice behaviors among competitive swimmers,” Journal of Applied Behavior Analysis, pp. 665-670, 1992.
[14] M. J. Hayes and P. R. Smith, “Quantitative evaluation of photoplethysmographic artefact reduction for pulse oximetry,” SPIE Biomed. Sensors, Filters, Opt. Del. Syst., vol. 3570, pp.7437-7446, 1998.
[15] S. Haykin, “Adaptive filter theory,” NJ, USA: Prentice Hall, 2002.
[16] M. J. Karvonen, E. Kentala, and O. Mustala, “The effects of training on heart rate; a longitudinal study,” Ann Med Exp Biol Fenn, vol. 35, pp. 307-15, 1957.
[17] B. S. Kim and S. K. Yoo, “Motion artifact reduction in photoplethysmography
using independent component analysis,” IEEE Trans. Biomed. Eng., vol. 53, no. 3, pp. 566-568, 2006.
[18] C. I. Karageorghis, L. Jones and D. C. Low, “Relationship between exercise heart rate and music tempo preference,” Research Quarterly for Exercise and Sport, pp. 240-250, 2006.
[19] S. H. Kim, D. W. Ryoo, and C. Bae, “Adaptive noise cancellation using accelerometers for the PPG signal from forehead,” Proc. Conf. IEEE Eng. Med. Biol. Soc., vol. 2007, pp.2564-2567, 2007.
[20] C. M. Lee, and Y. T. Zhang, “Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach,” IEEE EMBS Asian-Pacific Conf. on Biomed. Eng., pp. 194-195., 2003.
[21] K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys, vol. 18, No. 5, pp. 365-372, 1996.
[22] T. L. Rusch, R. Sankar, and J. E. Scharf, “Signal processing methods for pulse oximetry,” Comput. Biol. Med., vol. 26, pp. 143-159, 1996.
[23] S. Rhee, B.-H. Yang, and H. Asada, “The Ring Sensor: A new ambulatory wearable sensor for twenty-four hour patient monitoring,” Proc. 20th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, pp.1906-1909, 1998.
[24] R. A. Robergs and R. Lanwher, “The surprising history of the HRmax = 220-age equation,” J Exerc Physio, 2002.
[25] M. Radespiel-Troger, R. Rauh, C. Mahlke, T. Gottschalk, and M. Muck-Weymann, “Agreement of two different methods for measurement of heart rate variability,” Clin Auton Res., vol. 13, pp. 99-102, 2003.
[26] P. F. Stetson, “Independent component analysis of pulse oximetry signals,”
Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 231-234, 2004.
[27] H. Ugnell and P. A. Oberg, “Monitoring of heart and respiratory rates using a fiber optic sensor,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 13, No. 4, 1991.
[28] J. G. Webster, Design of Pulse Oximeters, New York: Taylor & Francis,
1997.
[29] J. S. Wong, W. A. Lu, K. T. Wu, M. Liu, G. Y. Chen, and C. D. Kuo, “A comparative study of pulse rate variability and heart rate variability in healthy subjects,” J Clin Monit Compul, vol. 26, no. 2, pp. 107-14, 2012.
[30] American College of Sports Medicine Position Stand, “The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults,” Med Sci Sports Exerc, vol. 30, pp.975-91, Jun 1998.
[31] http://www.mmh.org.tw/taitam/famme/health_promotion.htm
[32] 莊競程, “量測微循環冷熱溫度效應之系統研製,” 中原大學醫學工程學系碩士學位論文, 2005.