簡易檢索 / 詳目顯示

研究生: 鄧諺舉
Teng, Yen-Chu
論文名稱: 新型橡膠軸承一維定位平台之分析、設計、控制
Analysis, Design, and Control of a Novel Elastomeric Bearing Positioning Stage
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 132
中文關鍵詞: 橡膠軸承黏彈力學精密定位平台ISMCFPGA
外文關鍵詞: elastomeric bearings, generalized Maxwell model, positioning stage, controller design
相關次數: 點閱:107下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精密定位在精密機械領域中扮演重要角色,精密定位平台在自動化機台中能夠提供抑振和精密定位提升機台性能,過去許多研究以撓性機構設計精密定位平台搭配閉迴路控制系統達到精密定位性能,撓性平台剛性來自於撓性平板和絞鍊結構的尺寸設計導致平台體積龐大,為改善撓性機構的此問題,過去有學者引入橡膠軸承於精密機械設計,以橡膠軸承取代撓性機構設計精密定位平台,能夠有效降低平台體積且同時兼具高速高定位精度之性能,但無法有效建立含有橡膠黏彈特性之模型,鑒於此問題,本論文設計一音圈馬達驅動橡膠軸承定位平台,以此為基礎建立一套能夠針對橡膠軸承黏彈特性的建模方法,以實驗觀察黏彈特性並以黏彈模型描述此現象進行建模,以此更符合真實狀況的平台模型設計控制系統,PID和積分式滑動模態控制器(ISMC)在本文中被採用控制此非線性時變系統,以控制器之強健性壓制平台剛性變化,步階響應、弦波軌跡追蹤和負載實驗了解系統性能,在PID和ISMC分別能達到頻寬27Hz和350Hz,定位精度13 nm和203 nm。從結果觀察,本研究設計並實現一橡膠軸承精密定位平台,以此為基礎建立一套以黏彈特性建立橡膠軸承平台模型之方法,並以此模型建立相對應控制器設計方法,驗證橡膠軸承平台可以以較小體積達到與撓性平台相當之精密定位性能。

    Abstract
    As products are required with higher precision, vibration control becomes more important for precision machining and inspection. A stage with both fast positioning and relative vibration eliminated can improve product quality. Elastomeric bearings are widely used in the seismic engineering and precision machining fields. By utilizing their stiffness anisotropy, miniaturized bearings can be made of rubbers and have the same function as much larger compliant mechanism–based designs. This provides possible advantages in precision positioning. In this paper, for modeling the system dynamics of the stage, the mechanical properties of elastomeric bearings are determined through essential material tests of the load cells in this system. The results show that the bearing stiffness is both frequency- and time-dependent. A single-degree-of-freedom precision stage containing four elastomeric bearings is then designed and realized. The stiffness of the elastomeric bearings is modeled as a generalized Maxwell model by system dynamics testing of controller design. A closed-loop control system comprising an AVM40-20 voice coil motor, an ASP-10-CTR capacitance probe, and an Integral Sliding Mode controller is proposed for the precision stage. Signal processing for the entire system is performed under an NI cRIO-9014 LabVIEW FPGA real-time controller. In comparison with a previous compliant mechanism–based design, the stage volume is reduced from 130×40×15 mm to 30×33×33 mm, the positioning stroke is increased from 101 μm to 139 μm, and the bandwidth is increased from 29 Hz to 350 Hz.

    摘要 I Abstract II Extend Abstract III 致謝 XV 表目錄 XX 圖目錄 XXI 符號說明 XXVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 1.3 相關研究 7 1.4 研究方法 8 1.5 全文架構 10 第二章 研究背景介紹 12 2.1 本章介紹 12 2.2 撓性定位平台介紹 13 2.3 橡膠軸承介紹與相關應用 17 2.3.1橡膠材料介紹 17 2.3.2橡膠軸承於精密機械上之應用 25 2.4 控制硬體介紹 26 2.4.1 FPGA 26 2.4.2 嵌入式控制器(CompactRIO) 27 2.5 控制法則介紹及相關應用 30 2.6 相關文獻總結與討論 32 2.7 本章結論 33 第三章 橡膠軸承定位平台之設計與分析 34 3.1 本章介紹 34 3.2 橡膠軸承定位平台設計 35 3.2.1 定義設計目標 35 3.2.2 橡膠軸承平台概念性設計 36 3.2.3 系統整體概念設計 37 3.3 橡膠軸承平台機械設計 38 3.3.1靜態剛性分析 38 3.3.2 規格設計 40 3.4 平台動態模型建立 42 3.5 本章結論 45 第四章 系統實現與動態測試 46 4.1 本章介紹 46 4.2 實驗系統設計與實現 47 4.2.1 實驗系統設計與架設 48 4.2.2 實驗設備介紹 50 4.3 致動器系統動態測試與建模 52 4.4 平台剛性動態測試與建模 55 4.5平台阻尼參數實驗 57 4.6平台系統模型建立 58 4.7 本章結論 60 第五章 控制器設計與模擬 61 5.1 本章介紹 61 5.2 PID控制器設計與模擬 62 5.2.1 PID控制器理論 62 5.2.2 PID控制器設定之Zeigler-Nichols參數調整法 64 5.2.3 PID控制器之MATLAB Simulink模擬結果 66 5.3 滑動模態控制器(Sliding Mode Control, SMC) 69 5.3.1滑動模態控制器理論 69 5.3.2 控制器設計與模擬 74 5.4 積分式滑動模態控制器(Integral Sliding Mode Control, ISMC) 77 5.4.1 ISMC控制器理論 77 5.4.2 ISMC控制器之MATLAB Simulink模擬結果 79 5.5 本章結論 85 第六章 平台控制實驗 86 6.1 本章介紹 86 6.2 步階響應實驗 87 6.2.1 PID控制器步階響應實驗 87 6.2.2 ISMC步階響應實驗 91 6.2.3 小結 96 6.3 弦波軌跡追蹤實驗 98 6.4 平台強健性實驗 106 6.5本章結論 109 第七章 研究結果與討論 110 7.1 全文歸納 110 7.2 討論 113 7.2.1橡膠軸承定位平台設計與建模之討論 113 7.2.2 控制器設計之討論 114 7.2.3 與文獻之橡膠軸承定位平台比較 114 7.2.4 與撓性機構定位平台比較 116 7.3 未來展望與未來工作 118 7.3.1 近程目標 118 7.3.2 中程目標 119 7.3.3 遠程目標 120 7.4 本章結論 121 第八章 結論與未來展望 122 8.1 本文結論 122 8.2本文貢獻 124 8.3未來工作 125 參考文獻 126 附錄 129

    [1] Automatic Optimal Inspection Machine, TRT Innovation.
    http://www.tri.com.tw/cht/index.aspx
    [2] QC Inspection Services, Inc.
    http://www.qcinspect.com/coursedesc_CMMprogramming.htm
    [3] K.-S. Chen, D.L. Trumper, S.T. Smith, “Design and control for an electromagnetically driven X–Y–θ stage,” Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002) 355–369.
    [4] 李哲維, 堆疊式壓電雙軸精密定位平台之設計、分析與控制, 國立成功大學機械工程學系碩士論文, 2012.
    [5] D. P. Cuff, “ Electromagnetic Nanopositioner”, Master’s thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2006.
    [6] 王維志, 具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制, 國立成功大學機械工程學系碩士論文, 2010.
    [7] W. -C. Wang, J. -W. Lee, K. -S. Chen, and Y.-H. Liu, “Design and vibration control of a notch-based compliant stage for display panel inspection applications,” Journal of Sound and Vibration 333 (2014) 2701–2718
    [8] 林佩君, 雙軸式材料測試系統之設計與實現及其在橡膠軸承之應用, 國立成功大學機械工程學系碩士論文, 2013
    [9] 洪榮燦, 橡膠軸承之應力與失效分析, 科技部大專學生研究計畫報告, 2014.
    [10] 呂毓笙, 加速度回授於撓性結構之振動控制, 國立成功大學機械工程學系碩士論文, 2013
    [11] D.J. Kluk, “An Advanced Fast Steering Mirror for Optical Communication,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2007
    [12] L. L. Howell. Compliant Mechanisms. Wiley Publication, 2001
    [13] K.B. Choi, J.J. Lee, S. Hata, “A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel,” Sensors and Actuators A 161 (2010) 173–181
    [14] 江浩寧, 壓電致動刀具載台之設計分析及其在類銑削加工上之應用, 國立成功大學機械工程學系碩士論文, 2004。
    [15] Y.J. Choi, S.V. Sreenivasan, B.J. Choi, “Kinematic design of large displacement precision XY positioning stage by using cross strip flexure joints and over-constrained mechanism,” Mechanism and Machine Theory, Vol. 43, pp. 724-737, 2008
    [16] Gaoliang Dai, Frank Pohlenz, H.U. Danzebrink, Min Xu, Klaus Hasche, and Guenter Wilkening, “Metrological large range scanning probe microscope,” Review of Scientific Instruments, Vol. 75, No. 4, pp. 962-970, April 2004
    [17] J.W. Ryu, D.G. Gweon, and K.S.Moon, “Optimal design of a flexure hinge based XYθ wafer stage,” Precision Engineering, vol. 21, no. 1, pp. 18-28, July 1997.
    [18] 趙銘靖, 應用PID控制於單軸撓性壓電定位平台之振動控制研究, 南台科技大學機械工程學系碩士論文, 2011.
    [19] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, “Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, August 2003.
    [20] A. Balasubramanian, M. B. G. Jun, R. E. Devor, S. G. Kapoor, “A submicron multiaxis positioning stage for micro and nanoscale manufacturing processes,” ASME J. of Manufacturing Science and Engineering, vol. 130, pp. 1-8, June 2008.
    [21] A. N. Gent. Engineering with rubber: how to design rubber components. Hanser Publication, Munich, Germany, 2001
    [22] R. M. Christensen, Theory of viscoelasticity (an introduction), Academic Press, 1982.
    [23] P. B. Lindley, “Compression module for blocks of soft elastic material bonded to rigid end plates,” Journal of Strain Analysis, vol. 14, pp. 11-16, 1979..
    [24] P. B. Lindley. Engineering design with natural rubber. The Malaysian Rubber’s Research Association, 1970.
    [25] A. N. Gent and P. B. Lindley, “ The compression of bonded rubber blocks,” Proceedings of the Institution of Mechanical Engineers, vol. 173, no. 1, pp. 111-122, June 1959.
    [26] A. N. Gent, “Elastic stability of rubber compression springs,” Journal of Mechanical Engineering Science, vol. 6, no. 4, pp. 318-326, Dec. 1964.
    [27] A. R. Payne, “Effect of compression on the shear modulus of rubber,” Rubber Chemistry and Technoloty, vol. 63, no. 3, pp. 675-681, July 1963.
    [28] A. E. Barton-Martinelli, “Rubber bearings for precision positioning systems,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 2005
    [29] E. I. Rivin, “Properties and prospective applications of ultra thin layered rubber-metal laminates for limited travel bearings”, Tribology International, vol. 16, no. 1, pp. 17-25, Feb. 1983.
    [30] J. Kadlowec, D. Gerrard, and H. Pearlman, “Coupled axial–torsional behavior of cylindrical elastomer bushings,” Polymer Testing, vol. 28, no. 5, pp. 139-144, Apr. 2009.
    [31] National Instruments美商國家儀器公司, NI Labview FPGA , 2009
    [32] 嵌入式控制器, NI CompactRIO
    http://www.ni.com/compactrio/zht/
    [33] Q. Xu and Y. Li, “Global sliding mode-based tracking control of a piezo-driven XY micropositioning stage with unmodeled hysteresis,” in Intelligent Robots and Systems on IEEE/RSJ International Conference, St. Louis, USA, pp. 755-760, October 11-15, 2009
    [34] Yangmin Li and Qingsong Xu, “Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator,” IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, p.798-810, VOL. 18, NO. 4, JULY 2010
    [35] X. Xue and J. Tang, “Robust and high precision control using piezoelectric actuator circuit and integral continuous sliding mode control design,” Journal of Sound and Vibration Vol.293 pp. 335–359, 2006
    [36] 張碩, 自動控制系統, 鼎茂圖書, 台北, 2001.
    [37] C. Edwards, S. Spurgeon. Sliding Mode Control Theory And Applications. CRC Press, 1988.
    [38] 陳永平, 張浚林, 可變化結構控制設計, 全華科技圖書, 台北, 2002.
    [39] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood-Cliff., N.J., 1991
    [40] V. Utkin and J. Shi, “Integral sliding mode in systems operating under uncertainty conditions,” Proceedings of the 35th Conference on Decision and Control Kobe, Japan December 1996

    下載圖示 校內:2018-08-25公開
    校外:2018-08-25公開
    QR CODE