| 研究生: |
羅士閔 Lo, Shih-Min |
|---|---|
| 論文名稱: |
溢出型與捲浪型碎波在碎波帶上流場特性之數值研究 Numerical study of flow characteristics of spilling and plunging breakers in the surf zone |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 碎波帶 、溢出型碎波 、捲浪型碎波 、RANS |
| 外文關鍵詞: | surf zone, spilling breaker, plunging breaker, RANS |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以二維數值模式模擬週期波通過斜坡時在碎波帶之流場特性,藉由調整斜坡坡度以探討溢出型與捲浪型碎波之速度向量場、流線場、渦度場、紊流動能場及壓力場,並比較其物理現象。本文所使用之數值模式為求解雷諾平均方程(Reynolds Averaged Navier-Stokes,RANS), 並結合k-ε紊流閉合模式再以流體體積法(Volume of Fluid,VOF)追蹤自由液面。文中以Huang(2009a,b)與Huang(2010)之實驗作為數值驗證,以說明本文中之數值模式適用於模擬碎波帶之流場特性。接著在固定波浪條件下,討論週期波在1/20與1/10光滑斜坡上之溢出型與捲浪型碎波的流場特性,並探討碎波過程中流場結構的變化,以流線場、渦度場與紊流場等相互對照以比較其關聯性,由數值結果可以觀察捲浪型碎波整體而言之渦度與紊流動能皆大於溢出型碎波,且量值最大的部分集中在波峰之前端並逐漸向後擴展消散。
The study uses two dimensional numerical model to simulate the flow characteristics in the surf zone when the progressive regular waves over a slope beach, and discusses the velocity vector fields, streamline fields, vortex fields, turbulence kinetic energy fields and pressure fields of spilling breaker and plunging breaker by modulating the slope, then compares the physical phenomenon. The numerical model solves the Reynolds averaged Navier-Stokes (RANS) equations coupled with k-ε turbulence closure model, and uses the volume of fluid method to track free surface configurations.
On model validation, the experimental results of Huang(2009a,b) and Huang(2010) are taken to compare with the numerical results for demonstrating that the numerical model can be apply to simulate the flow characteristics in the surf zone. By fixing the wave conditions, the flow characteristics of spilling breaker and plunging breaker on 1/20 and 1/10 slopes are discussed. From the numerical results, the vortex values and the turbulence values of plunging breaker are much stronger than spilling breaker, and the max values generate in the bore front and then decrease in the inner surf zone.
1. Battjes, J.A., (1974). Surf similarity. Proc. 14th Int. Conf. Coast. Eng., pp. 466-480. ASCE.
2. Battjes, J.A., (1988). Surf-zone dynamics. Annu. Rev. Fluid Mech. 20,257-293.
3. Bradford, S.F., (2000). Numerical simulation of surf zone dynamics. J. Waterw. Port Coast. Ocean Eng. Vol. 126, pp. 1-13.
4. Chorin, A.J., (1968). Numerical solution of Navier-Stokes equations. Math. Comp., Vol. 22, pp. 745-762.
5. Chorin, A.J., (1969). On the convergence of discrete approximations of the Navier-Stokes equations. Math. Comp., Vol. 23, pp. 341-353.
6. Christensen, E.D. and Deigaard, R., (2001). Large eddy simulation of breaking waves. Coastal Engineering, Vol. 45(1), pp. 53-86.
7. Cox, D.T., Kobayashi, N. and Okayasu, A., (1994). Vertical variations of fluid velocities and shear stress in surf zones. Proc. 24th Int. Conf. Coastal Eng., Vol. 1 , pp. 98-112.
8. Feng, T. and Stansby, P.K., (2005). Streamline topography in periodic surf zone waves from LDA measurements. Measurement Science &Technology, Vol. 16, pp. 1929-1936.
9. Goda, Y. (2010). Reanalysis of regular and random breaking wave statistics. Coastal Eng . J, Vol. 52(1), pp. 71-106.
10. Govender, K., Mocke, G.P. and Alport, M.J., (2004). Dissipation of isotropic turbulence and length-scale measurements through the wave roller in laboratory spilling waves. J. Geophys. Res., Vol.109(C08018), pp. 5115-5124.
11. Hirt, C.W., Nichols, B.D., (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., Vol. 39(1), pp. 201-225.
12. Huang, Z.C., Hsiao, S.C., and Hwung, H.H., (2009a). Observation of coherent turbulent structure under breaking wave. International Journal of Offshore and Polar Engineering, Vol. 19(1), pp. 15-22.
13. Huang, Z.C., Hsiao, S.C., Hwung, H.H. and Chang, K.A., (2009b). Turbulence and energy dissipations of surf-zone spilling breakers. Coastal Engineering, Vol. 56, pp.733-746.
14. Huang, Z.C., (2010). Experimental study of surf-zone dynamics and turbulence. PhD thesis. National Cheng Kung University, Tainan, Taiwan.
15. Jiang, C.B., Chen, J., Tang, H.S., Cheng, Y.Z. (2011). Hydrodynamic processes on beach:Wave breaking,up-rush, and backwash. Commun. Nonlinear Sci. Numer. Simulat. Vol. 16, pp. 3126-3139.
16. Kimmoun, O. and Branger, H., (2007). A particle images velocimetry investigations on laboratory surf-zone breaking waves over a sloping beach. Journal of Fluid Mechanics, Vol. 588, pp. 353-397.
17. Kothe, D.B., Mjolsness, R.C., Torrey, M.D., (1991). RIPPLE: a new model for incompressible flows with free surface. Rep. LA-12007-MS, Los Alamos National Laboratory.
18. Lemos, C.M., (1992). Wave breaking. Springer-Verlag.
19. Lin, P. and Liu, P.L.-F., (1998a). A numerical study of breaking waves in the surf zone. J. Fluid Mech. Vol. 359, pp. 239-264.
20. Lin, P. and Liu, P.L.-F., (1998b). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J.Geophys. Res., vol. 103(C8),pp. 15677-15694.
21. Lin, P., (1998). Numerical modeling of wave breaking waves. PhD dissertation, Cornell University, Ithaca, USA.
22. Liu, P.L.-F, Lin, P., Chang, K.-A.,(1999). Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng., ASCE, Vol. 125(6), pp. 322-330.
23. Longo, S. Petti, M. and Losada, I.J., (2002). Turbulence in the swash and surf zones: a review Coastal Engineering, Vol. 45, pp. 129-147.
24. B. and Koh, R.C.Y., (1967). On the breaking waves arriving at an angle to the shore. Hydraul. Res., Vol.5, No.1, pp. 67-88.
25. B., (1976). An Introduction to Hydrodynamics and Water Wave, Springer-Verlag.
26. Okayasu, A., (1989). Characteristics of turbulence structures and undertow in the surf zone,Ph.D thesis, Yokohama National University, Yokohama, Japan.
27. Peregrine, D.H., (1983). Breaking waves on beaches. Annu. Rev. Fluid Mech. 15,pp. 149-178.
28. Rodi, W., (1980). Turbulence models and their application in Hydraulic : a State of the Art Review. International Association for Hydraulic Research, Delft, The Netherlands. 9021270021.
29. Shih, T.-H., Zhu, J., Lumley, J.L., (1996). Calculation of wall-bounded complex flows and free shear flows. Int. J. Numer. Meth. Fluid, Vol. 23(11), pp. 1133-1144.
30. Sou, I.M. and Yeh, H., (2010). Laboratory study of the cross-shore flow structure in the surf and swash zones. J. Geophys.. Res, Vol. 116, C03002, 15pp.
31. Stive, M.J.F., (1980). Velocity and pressure field in spilling breakers. Proc. 17th Int. Conf. Coastal Eng., Vol. 8, pp. 547-566.
32. Ting, F.C.K. and Kirby, J.T., (1994).Observation of undertow and turbulence in a laboratory surf zone. Coastal Engineering, Vol. 24, pp.51-80.
33. Ting, F.C.K. and Kirby, J.T., (1995). Dynamics of surf zone turbulence in a strong plunging breaker. Coastal Engineering, Vol. 24, pp.177-204.
34. Ting, F.C.K. and Kirby, J.T., (1996). Dynamics of surf zone turbulence in a spilling breaker. Coastal Engineering, Vol. 27, pp.131-160.
35. Torres-Freyermuth, A., Lara, J.L., Losada, I.J., (2010). Numerical modeling of short- and long-wave transformation on a barred beach. Coastal Engineering, Vol. 57(3), pp. 317-346.
36. Tsai, C.Y., (2009). A numerical study on flow fields under wave breaking and resonant bragg reflection. PhD thesis. National Cheng Kung University, Tainan, Taiwan.