| 研究生: |
李紀琳 Lee, Ji-Lin |
|---|---|
| 論文名稱: |
軸流式衝擊噴柱與柱鰭陣列旋轉冷卻流道熱傳特性實驗研究 An experimental study of heat transfer characteristic for axial flow mode rotating cooling channel with impinging-jet and pin-fin arrays |
| 指導教授: |
張始偉
Chang, Shyy-Woei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 衝擊噴柱及柱鰭通道 、軸流模式 、渦輪轉子葉片冷卻 |
| 外文關鍵詞: | Impingement Jets Pin-Fin Channel, Axial Flow, Turbine Rotor Blade Cooling |
| 相關次數: | 點閱:71 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了減緩科氏力作用對燃氣渦輪機轉子葉片冷卻性能的不利影響,採用帶有橫向排放的旋轉楔形衝擊噴柱和柱鰭陣列通道配置,產生軸向冷卻(軸流式)模式。並比較兩個軸向冷卻(軸流式)通道在旋轉下,由光滑和開槽噴嘴壁所產生的紐賽數分布、凡寧摩擦係數和空氣熱性能係數。對於帶有凹槽和不帶凹槽的衝擊和柱鰭陣列區域的旋轉迎風(背風)面上的平均紐賽數進行了修正,修正值分別為靜態通道參考值的1.2-2.1倍(1.31-2.18倍)和1.15-1.64倍(1.2-2.15)倍;而衝擊噴柱(柱鰭陣列)區域上的最小壁面紐賽數則分別降低到區域平均紐賽數的20-65% (25-55%) 和 20-65% (25-60%)。噴嘴壁上的凹槽削弱了噴流之間的約束,並導引冷卻側流向柱鰭通道區域,提高了衝擊噴柱(柱鰭陣列)區域旋轉迎風、背風面的區域平均紐賽數,提高至光滑噴嘴壁的1.11-1.39倍 (1.17-1.39倍) 和 1.12-1.56倍 (1.19-1.44倍)。旋轉靜態凡寧摩擦數比值介於1.06-1.21倍(1.03-1.16倍)之間,開槽(光滑)的通道API∞ 值達到15-19.8 (10.1-15)。制定了兩個旋轉通道的區域平均紐賽數和凡寧摩擦係數相關性以供相關應用使用。
For leading edge cooling of a gas turbine rotor blade, the cooling performances of two rotating wedge-shaped channels with impinging jet-array and pin-fin array in axial flow mode (AFC) are experimentally studied for recovering the unfavorable Coriolis-force effect that undermines the heat transfer performance on a stabilized rotating surface. The study measures the detailed endwall Nusselt number (Nu) distributions, the Fanning friction factors (f), and the aerothermal performance indices (API) for the two rotating channels equipped with the smooth- and grooved-nozzle walls. The endwall average Nusselt numbers over the leading (trailing) surfaces for the impingement and pin-fin regions with and without the grooved nozzle walls are raised to 1.2-2.1(1.31-2.18) and 1.15-1.64(1.2-2.15) times the Nusselt number levels in static conditions (Nu0). The minimum endwall Nusselt numbers on the impingement (pin-fin) areas respectively fall to 20-65% (25-55%) and 20-65% (25-60%) of the endwall-mean Nusselt numbers. The grooved nozzle wall weakens the confinements of jet-array and assist to guide the cold coolant flows laterally toward the pin-fin region. The endwall average Nusselt numbers on the leading and trailing surfaces of the impingement (pin-fin) region of the rotating channel with the grooved nozzle wall are raised to 1.11-1.39 (1.17-1.39) and 1.12-1.56 (1.19-1.44) times the Nusselt numbers with smooth nozzle-wall. The ratios of Fanning friction factor between the rotating and static channels are between 1.06-1.21 and (1.03-1.16); whereas the values of API∞ are elevated to 15-19.8 (10.1-15) for the test channels with the grooved (smooth) nozzle walls. The correlations of endwall average Nusselt number and channel Fanning friction factors are devised to assist the cooling design applications of a gas turbine rotor blade.
[1] L.W. Florschuetz, C.R. Truman, D.E. Metzger, Streamwise flow and heat transfer distributions for jet array impingement with crossflow, J. Heat Transfer 103 (1981) 337–342.
[2] R. Viskanta, Heat transfer to impinging isothermal gas and flame jets, Experimental Thermal Fluid Science 6 (1993) 111–134.
[3] A. Mensch, K.A. Thole, Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade endwall, Int. J. Heat Mass Transfer 82 (2015) 66-77.
[4] A. Terzis, P. Ott, J. Wolfersdorf, B. Weigand, M. Cochet, Detailed heat transfer distributions of narrow impingement channels for cast-in turbine airfoils, J. Turbomachinery 136 (2014) 091011.
[5] S.W. Chang, H.-D. Shen, Heat transfer of impinging jet array with web-patterned grooves on nozzle plate, Int. J. Heat Mass Transfer 141 (2019) 129-144.
[6] S.W. Chang, H.-D. Shen, Heat transfer characteristics of swirling impinging jet-arrays issued from nozzle plates with and without webbed grooves, Int. J. Thermal Sciences 148 (2020) 106155.
[7] Z. Chi, R. Kan, J. Ren, H. Jiang, Experimental and numerical study of the anti-crossflows impingement cooling structure, Int. J. Heat Mass Transfer Volume 64 (2013) 567-580.
[8] P. Singh, A. Sarja, S. Ekkad, Experimental and numerical study of chord-wise eight-passage serpentine cooling design for eliminating the Coriolis force adverse effect on heat transfer, J. Thermal Science and Engineering Applications 13 (2021) 011026.
[9] J.A. Parsons, J.-C. Han, C.P. Lee, Rotation effect on jet impingement heat transfer in smooth rectangular channels with four heated walls and radially outward crossflow, J. Turbomachinery 120 (1998) 79-85.
[10] K.V. Akella, J.-C. Han, Impingement cooling in rotating two-pass rectangular channels with ribbed walls, J. Thermosyphics and Heat Transfer 13 (1999) 364-371.
[11] J.A. Parsons, J.-C. Han, Jet-impingement heat transfer in rotating channels with staggered extraction flow, J. Thermosyphics and Heat Transfer 19 (2005) 156-162.
[12] L. Furlani, A. Armellini, L. Casarsa, Rotational effects on the flow field inside a leading edge impingement cooling passage, Experimental Thermal Fluid Science 76 (2016) 57-66.
[13] D. Massini, E. Burberi, C. Carcasci, L. Cocchi, B. Facchini, A. Armellini, L. Casarsa, L. Furlani, Effect of rotation on a gas turbine blade internal cooling system: experimental investigation, J. Engineering Gas Turbines and Power 139 (2017) 101902.
[14] H. Iacovides, D. Kounadis, B.E. Launder, J. Li, Z. Xu, Experimental study of the flow and thermal development of a row of cooling jets impinging on a rotating concave surface, J. Turbomachinery 127 (2005) 222-229.
[15] S.K. Hong, D.H. Lee, H.H. Cho, Heat/Mass transfer measurement on concave surface in rotating jet impingement, J. Mechanical Science Technology 22 (2008) 1952-1958.
[16] S.K. Hong, D.H. Lee, H.H. Cho, Effect of jet direction on heat/mass transfer of rotating impingement jet, Applied Thermal Engineering 29 (2009) 2914-2920.
[17] S.K. Hong, D.H. Lee, H.H. Cho, Heat mass transfer in rotating impingement effusion cooling with rib turbulators, Int. J. Heat Mass Transfer 52 (2009) 3109-3117.
[18] C.A. Elston, L.M. Wright, Leading edge jet impingement under high rotation numbers, J. Thermal Science and Engineering Applications 9 (2017) 021010.
[19] J. Wang, J. Liu, L. Wang, B. Sunden, S. Wang, Conjugated heat transfer investigation with racetrack-shaped jet hole and double swirling chamber in rotating jet impingement, Numerical Heat Transfer, Part A 73 (2018) 768-787.
[20] J. Wang, H. Deng, Z. Tao, Y. Li, J. Zhu, Heat transfer in a rotating rectangular channel with impingement jet and film holes, Int. J. Thermal Sciences 163 (2021) 106832.
[21] H. Deng, Z. Wang, J. Wang, H. Li, Flow and heat transfer in a rotating channel with impingement cooling and film extraction, Int. J. Heat Mass Transfer 180 (2021) 121751.
[22] H. Deng, H. Li, J. Xu, Heat transfer in an impingement cooling channel under isothermal boundaries at high rotation numbers, Int. J. Heat Mass Transfer 182 (2022) 121940.
[23] H. Li, H. Deng, L. Qiu, Effect of channel orientation on heat transfer in a rotating impingement cooling channel, In. J. Heat Mass Transfer 187 (2022) 122493.
[24] L. Yang, P. Singh, K. Tyagi, J. Pandit, S.V. Ekkad, J. Ren, Experimental investigation of rotational effects on heat transfer enhancement due to crossflow induced swirl using transient liquid crystal thermography, J. Thermal Science and Engineering Applications 10 (2018) 031001.
[25] S.W. Chang, K.-C. Yu, Thermal performance of radially rotating trapezoidal channel with impinging jet-row, Int. J. Heat Mass Transfer 136 (2019) 246-264.
[26] F.E. Ames, L.A. Dvorak, Turbulent transport in pin fin arrays: Experimental data and predictions. J. Turbomachinery 128 (2006) 71-81.
[27] L.M. Wright, E. Lee, J.-C. Han, Effect of rotation on heat transfer in rectangular channels with pin fins, J. Thermophysics and Heat Transfer 18 (2004) 263-272.
[28] S.W. Chang, T.-M. Liou, T.L. Yang, G.F. Hong, G.F. Heat transfer in radially rotating pin-fin channel at high rotation numbers, J. Turbomachinery 132 (2010) 021019.
[29] S.W. Chang, T.-M. Liou, T.-H. Lee, Heat transfer of a rotating rectangular channel with a diamond-shaped pin-fin array at high rotation numbers, J. Turbomachinery 135 (2013) 041007.
[30] S.W. Chang, Y.-W. Hu, Endwall thermal performances of radially rotating rectangular channel with pin-fins on skewed rib lands, Int. J. Heat Mass Transfer 69 (2014) 173-190.
[31] J.S. Park, K.M. Kim, D.H. Lee, H.H. Cho, M. Chyu, Heat transfer in rotating channel with inclined pin-fins, J. Turbomachinery 133 (2011) 021003.
[32] X. Zhang, H. Li, Y. Tian, R. You, D. Zhang, A. Wu, Heat transfer in a rotating lateral outflow trapezoidal channel with pin fins under high rotation numbers and Reynolds numbers, Applied Thermal Engineering 213 (2022) 118725.
[33] S.W. Chang, T.L. Yang, C.C. Huang, K.F. Chiang, K.F., Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array, Int. J. Heat Mass Transfer 51 (2008) 5247-5259.
[34] W. Du, L. Luo, S. Wang, J. Liu, B. Sunden, Heat transfer and flow structure in a rotating duct with detached pin fins, Numerical Heat Transfer, Part A, 75 (2019) 217-241.
[35] C. Liang, Y. Rao, Numerical study of turbulent flow and heat transfer in channels with detached pin fin arrays under stationary and rotating conditions, Int. J. Thermal Sciences 160 (2021) 106659.
[36] I. Sahin, I-L. Chen, L.M. Wright, J.-C. Han, H. Xu, M. Fox, Heat transfer in rotating, trailing edge, converging channels with partial length pin-fins, J. Turbomachinery, 143 (2021) 061009.
[37] W. Du, L. Luo, S. Wang, X. Zhang, Effect of the dimple location and rotating number on the heat transfer and flow structure in a pin finned channel, Int. J. Heat Mass Transfer 127 (2018) 111-129.
[38] Y. Chen, G. Xu, J. Wen, C. Zhu, Rotational heat transfer in a rectangular cooling channel with compound turbulators of pin-fins and dimples, Int. J. Heat Mass Transfer 184 (2022) 121897.
[39] H. Li, H. Deng, L. Bai, J. Zhu, S. Tian, L. Qiu, Heat transfer in a rotating two-inlet wedge-shaped channel with pin-fins, Int. J. Heat Mass Transfer 163 (2020) 120380.
[40] S.W. Chang, C.J. Hsu, Comparative aerothermal performance of two rotating triple-pass channels with lateral flow exit roughened by skewed ribs and pin-fins with and without internal effusion, Int. J. Thermal Sciences 188 (2023) 108243.
[41] S.W. Chang and C.-A. Chen, Aerothermal performances of two-pass wavy ribbed channels without and with internal effusion at three bypass angles, Int. Comm. Heat Mass Transfer 128 (2021) 105614 1-22.
[42] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mech. Eng. 75 (1953) 3-8.
[43] A. I. Behbahani, R. J. Goldstein, Local heat transfer to staggered arrays of impinging circular air jets, J. Engineering for Gas Turbines and Power 105 (1983) 354-360.
[44] Y. Shan, J.-Z. Zhang, G.-N. Xie, Convective heat transfer for multiple rows of impinging air jets with small jet-to-jet spacing in a semi-confined channel, Int. J. Heat Mass Transfer 86 (2015) 832-842.
[45] B.P.E. Dano, J.A. Liburdy, K. Kanokjaruvijit, Flow characteristics and heat transfer performances of a semi-confined impinging arrays of jets: effect of nozzle geometry, Int. J. Heat Mass Transfer 48 (2005) 691-701.
[46] S. Spring, Y. Xing, B. Weigand, An experimental and numerical study of heat transfer from arrays of impinging jets with surface ribs, J. Heat Transfer 134 (2012) 082201.
[47] S.-C. Hung, S.-C. Huang, Y.-H. Liu, Effect of nonuniform pin-size on heat transfer in a rotating rectangular channel with pin-fin arrays, Applied Thermal Engineering 163 (2019) 114393.
[48] K.L. Kirsch, K.A. Thole, Pressure loss and heat transfer performance for additively and conventionally manufactured pin fin arrays, Int. J. Heat Mass Transfer 108 (2017) 2502-2513.
[49] S.W. Chang, P.-S. Wu, Y.-E. Lu, C.-A. Chen, Aerothermal performances improvement by novel stepped zebra-ribs in two-pass channel, Int. Communications in Heat and Mass Transfer 142 (2023) 106632.
[50] L. Furlani, A. Armellini, L. Casarsa, Buoyancy effect at high rotation number on the flow field inside a triangular shaped rib roughened channel, Proceedings of 11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC11, March 23-27, 2015, Madrid, Spain, ETC2015-074, pp. 1-11.