| 研究生: |
徐菁偉 Hsu, Ching-wei |
|---|---|
| 論文名稱: |
應用於生醫感測器之1伏特13微瓦連續漸進式類比數位轉換器 A 1-V 13-μW on-Chip Successive Approximation Analog-to-Digital Converter for Bio-Sensing Applications |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 連續漸進式類比數位轉換器 、低功率 |
| 外文關鍵詞: | low-power, Successive Approximation Analog-to-Digital Conve |
| 相關次數: | 點閱:58 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為了實現一個應用於植入式生醫感測器的低電壓、低功率消耗的類比數位轉換器,提出了一個1伏特10位元低電壓低功率連續漸進式類比數位轉換器。利用全差動式的架構可以有效的減低雜訊及固定比較器的共模準位,使其對共模輸入準位的要求較低。為了減低功率消耗,採用了自我時間式位元轉換使前置放大器有接近兩倍的時間可以穩定,且當轉換完成時將所有元件的電流關閉。此外,前置放大器的元件操作在弱反轉區,皆可以有效的減低功率消耗。
本論文使用0.18 微米一層多晶矽六層金屬之互補式金氧半製程,實現一個供應電壓為1伏特,輸出為10位元的數位訊號,取樣頻率為200千赫低功率消耗類比數位轉換器。在輸入訊號為20.04千赫時,連續漸進式類比數位轉換器的訊號對於雜訊及諧波失真比為 61.73 dB,而微分非線性誤差在 ±0.3 LSB 的範圍,積分非線性誤差在 ±0.2 LSB 的範圍,不含偏壓電路,整個電路的功率消耗為 13微瓦。
This thesis describes a low supply voltage and low-power integrated analog-to-digital converter (ADC) for implantable bio-medical sensor applications. A 1-V 10-bit successive approximation ADC is proposed. The fully differential architecture can suppress the noise effectively and allow a rail-to-rail input voltage range. The settling time of the preamplifier of the comparator becomes nearly two times by using a self-timed bit-cycling technique. In addition, the component will shut down when the conversion is finished. Therefore, the power consumption can be reduced.
This successive approximation ADC with a 1-V supply voltage has been design in 0.18-μm CMOS process without low threshold MOS devices. The SNDR is 61.73 dB with the input frequency of 20.04 kHz and sample frequency of 200 kHz. The INL and DNL are between ±0.3LSB, and total power consumption without biasing circuit is 13-μW. FOM of the pre-layout simulation achieves 0.067 (pJ/conv.) without accounting biasing circuit.
References
[1] Q. Li, K. H. R. Tan, T. T. Hui, and R. Singh, “A 1-V 36-pW low-noise adaptive interface IC for portable biomedical applications,” in Proc. 33rd European Solid-State Circuits Conf., Sept. 2007, pp. 288-291
[2] H. C. Chow, B. W. Chen, H. C. Chen, and W. S. Feng, “A 1.8V, 0.3mW, 10-bit SA-ADC with new self-timed timing control for biomedical applications,” in ISSCC Dig. Tech. Papers, vol. 1, May 2005, pp. 736-739
[3] K. Shimohigashi and K. Seki, “Low voltage ULSI design,” IEEE J. Solid-State Circuits, vol. 8, pp. 408-413, Apr. 1993.
[4] T. Cho, “Low-power low-voltage analog-to-digital conversion techniques using pipelined architectures,” Ph.D. dissertation, UC Berkeley, U.S.A., 1995.
[5] D. A. Rauth and V. T. Randal, “Analog-to-Digital conversion,” IEEE Instrum. Meas. Mag., vol. 8, pp. 44-54, Oct. 2005.
[6] N. Verma and A. P. Chandrakasan, “An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 42, pp. 1196-1205, June 2007.
[7] J. Craninckx and G. Van der Plas, “A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2007, pp. 246-600.
[8] K. Martin and D. A. Johns, Analog Integrated Circuit Design. New York: Wiely, 1997.
[9] B. Razavi, Data Conversion System Design. New York: IEEE Press, 1995.
[10] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford, 2002.
[11] T. Tsukada, Y. Nakatani, E. Imaizumi, Y. Toba, and S. Ueda, “CMOS 8-b 25-MHz flash ADC,” in ISSCC Dig. Tech. Papers, Feb. 1985, pp. 34-35.
[12] S. Rapuano, P. Daponte, E. Balestrieri, L. De Vito, S. J. Tilden, S. Max, and J. Blair “ADC parameters and characteristics,” IEEE Instrum. Meas. Mag., vol. 8, pp. 44-54, Dec. 2005.
[13] T. B. Cho and P. R. Gray, “A 10-b, 20-Msample/s, 35-mW pipeline ADC,” IEEE J. Solid-State Circuits, vol. 30, pp. 166-172, Mar. 1995.
[14] S. Lewis and P. R. Gray, “A pipelined 5MHz 9b ADC,” in ISSCC Dig. Tech. Papers, Feb. 1987, pp. 210-211.
[15] P. C. Yu and H. S. Lee, “A 2.5-V 12-b 5-MSample/s pipelined CMOS ADC,” in ISSCC Dig. Tech. Papers, Feb. 1996, pp. 314-315.
[16] D. Myazaki, S. Kawahito, and M. Furuta, “A 10-b 30-MS/s low-power pipelined CMOS ADC using a pseudodifferential architecture,” IEEE J. Solid-State Circuits, vol. 38, pp. 369-373, Feb. 2003.
[17] R. Van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters. Boston, MA: Kluwer Academic, 2003.
[18] C. A. Vega de la Cruz, “A switched opamp comparator to improve the conversion rate of low-power low-voltage successive approximation ADCs,” MS. thesis, University of Puerto Rico Maygez Campus, Aug. 2005.
[19] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation. New York: IEEE Press, 1998.
[20] G. Promitzer, “12-bit low-power fully differential noncalibrating successive approximation ADC with 1MS/s,” IEEE J. Solid-State Circuits, vol. 36, pp. 1138-1143, July 2001.
[21] J. Steensgaard, “Bootstrapped low-voltage analog switches,” in Proc. IEEE Int. Symp. Circuits and Syst., June 1999, pp. 29-32.
[22] M. Dessouly and A. Kaiser, “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE J. Solid-State Circuits, vol. 36, pp. 349-355, Mar. 2001.
[23] U. Moon, G. Temes, E. Bidari, M. Keskin, L. Wu, J. Steensgaard, and F. Maloberti, “Switched-capacitor circuit techniques in submicron low-voltage CMOS,” in Proc. IEEE Int. Conf. on VLSI and CAD, Oct. 1999, pp. 349-358.
[24] B. Razavi, Design of Analog CMOS Integrated Circuit. New York: McGraw Hill, 2001.
[25] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford, 2002.
[26] R. van de Plassche, Integrated Analog-to-digital and Digital-to-Analog Converters. Boston, MA: Kluwer Academic, 1994.
[27] M. Burns and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement. New York: Oxford, 2001.
[28] S. Mortezapour and E. K. F. Lee, “A 1-V, 8-bit successive approximation ADC in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 35, pp. 642 - 646, April 2000.
[29] H. W. Liu, “A 1-V 10-Bit pipelined A/D converter based on switched-opamp technique,” MS. Thesis, National Cheng Kung University, Aug. 2002.
[30] H. C. Hong and G.M. Lee, “A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 42, pp. 2161-2168, Oct. 2007.