簡易檢索 / 詳目顯示

研究生: 陳聖筆
Tantawi, Steven
論文名稱: 低溫共燒陶瓷CoMoO4及Li1.6Mn2.2Mo3O12之微波介電特性
Microwave Dielectric Properties of Low Firable CoMoO4 and Li1.6Mn2.2Mo3O12 Ceramics
指導教授: 黃正亮
Huang, Cheng Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 微波介電低溫共燒陶瓷共燒
外文關鍵詞: Microwave Dielectric, LTCC, Co-firable
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分別介紹兩大部分,第一部分將介紹新開發的低溫燒結微波介電材料;第二部分將在不同基板上分別爲FR4、Al2O3以及Li1.6Mn2.2Mo3O12設計一濾波器,分析其模擬與實作結果。
    首先介紹CoMoO4 及Li1.6Mn2.2Mo3O12陶瓷材料之微波介電特性與材料微結構。由實驗得知,CoMoO4陶瓷材料在燒結690oC持溫4小時下,可得最佳介電特性ε_r~8.4, Q×f~55,000 Ghz, τ_f~-112 ppm⁄℃; Li1.6Mn2.2Mo3O12陶瓷材料在燒結810oC持溫4小時下,可得最佳介電特性ε_r~9.1, Q×f~43,000 Ghz, τ_f~-91 ppm⁄℃。兩者燒結溫度都小於950oC,都有作爲LTCC材料的潛力。
    最後,我們以利用HFSS模擬運作在2.4GHz之濾波器電路,並將電路實作於FR4、Al2O3以及Li1.6Mn2.2Mo3O12基板上,由結果比較可發現,高品質因數能使損耗減少。

    Low-firing microwave dielectric ceramics CoMoO4 and Li1.6Mn2.2Mo3O12 were investigated as potential materials for Low- Temperature Co-fired Ceramics (LTCC). Both ceramics were synthesized using the conventional solid state reaction. The ceramic CoMoO4 has a dielectric constant ε_r~8.4, quality factor Q×f~55,000 Ghz and temperature coefficient of resonant frequency τ_f~-112 ppm⁄℃ when sintered at 690oC for 4 hours; the ceramics Li1.6Mn2.2Mo3O12 has a dielectric constant ε_r~9.1, quality factor Q×f~43,000 Ghzand temperature coefficient of resonant frequency τ_f~-91 ppm⁄℃ when sintered at 810oC for 4 hours.
    Moreover, a hairpin structure with additional open stub micro-strip filter was made into the substrate in practice. Results show that a low loss dielectric ceramic can improve the performance of the filter.

    摘要 I 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 微波技術與共振器發展 3 2-2 材料的燒結 5 2-2-1 材料燒結之擴散方式 5 2-2-2 材料燒結之過程 7 2-2-3 燒結的種類 7 2-3 介電共振器之原理 9 2-4 微波介電材料之特性 13 2-4-1 介電常數(εr) 13 2-4-2 品質因數(Q×f) 17 2-4-3 共振頻率溫度飄移係數(τf) 20 2-5 拉曼光譜與分子振動模態簡介 20 2-5-1 拉曼光譜(Raman Spectra) 20 2-5-2 分子的振動模態(Vibrational modes) 21 2-6 低溫共燒陶瓷(LTCC)技術簡介 22 第三章 微帶線及濾波器原理 23 3-1 濾波器 23 3-1-1 濾波器的簡介 23 3-1-2 濾波器的種類 24 3-2 微帶線 27 3-2-1 微帶線簡述 27 3-2-2 微帶線傳輸模態 28 3-2-3 微帶線各項參數公式計算與考量 29 3-2-4 微帶線的不連續效應 32 3-2-5 微帶線的損失 38 3-3 微帶線諧振器的種類 39 3-3-1 λ4短路微帶線共振器 40 3-3-2 λ2開路微帶線共振器 41 3-4 共振器間的耦合形式 42 3-4-1 電場耦合(Electric Coupling) 43 3-4-2 磁場耦合(Magnetic Coupling) 46 3-4-3 混和耦合(Mixed coupling) 50 3-5 濾波器設計 53 3-5-1 Hairpin微帶線共振器 53 3-5-2 輸入輸出饋入端 54 3-5-3 四分之一波長的阻抗轉換器與開路殘端(Open Stub) 55 3-5-4 Hairpin微帶線共振器及開路殘端 56 第四章 實驗程序與量測儀器 59 4-1 微波介電材料的製備 59 4-1-1 粉末的製備與球磨 60 4-1-2 粉末的煆燒 60 4-1-3 加入黏劑、過篩 60 4-1-4 壓模成形、去黏劑及燒結 60 4-2 微波介電材料的量測與分析 61 4-2-1 密度測量 61 4-2-2 X-Ray分析 61 4-2-3 SEM分析 62 4-2-4 拉曼光譜儀分析 62 4-2-5 介電特性量測方法 62 4-3 濾波器的製作過程 70 第五章 實驗結果與討論 72 5-1 CoMoO4之微波介電特性 72 5-1-1 CoMoO4的XRD相組成分析 72 5-1-2 CoMoO4的拉曼光譜分佈 74 5-1-3 CoMoO4的SEM分析 75 5-1-4 CoMoO4的相對密度分析 76 5-1-5 CoMoO4的εr值分析結果 76 5-1-6 CoMoO4的Q×f值分析結果 77 5-1-7 CoMoO4的τf值分析結果 78 5-2 Li1.6Mn2.2Mo3O12之微波介電特性 78 5-2-1 Li1.6Mn2.2Mo3O12的XRD相組成分析 78 5-2-2 Li1.6Mn2.2Mo3O12的拉曼光譜分佈 79 5-2-3 Li1.6Mn2.2Mo3O12的SEM及EDS分析 80 5-2-4 Li1.6Mn2.2Mo3O12的相對密度分析 82 5-2-5 Li1.6Mn2.2Mo3O12的εr值分析結果 83 5-2-6 Li1.6Mn2.2Mo3O12的Q×f值分析結果 83 5-2-7 Li1.6Mn2.2Mo3O12的τf值分析結果 84 5-2-8 Li1.6Mn2.2Mo3O12的晶格常數 84 5-3 濾波器的模擬與實作 86 5-3-1 玻璃纖維基板(FR4)之濾波器模擬與實作結果 87 5-3-2 氧化鋁基板之濾波器模擬與實作結果 89 5-3-3 Li1.6Mn2.2Mo3O12基板之濾波器模擬與實作結果 91 第六章 結論 94 參考文獻 95

    1. Vreeland, F.K., A Sine-Wave Electrical Oscillator of the Organ Pipe Type. Physical Review (Series I), 1908. 27(4): p. 286.
    2. Goerth, J. Early magnetron development especially in Germany. in Origins and Evolution of the Cavity Magnetron (CAVMAG), 2010 International Conference on the. 2010. IEEE.
    3. Varian, R.H. and S.F. Varian, A high frequency oscillator and amplifier. Journal of Applied Physics, 1939. 10(5): p. 321-327.
    4. Thumm, M. Historical German contributions to physics and applications of electromagnetic oscillations and waves. in Proc. Int. Conf. on Progress in Nonlinear Science, Nizhny Novgorod, Russia. 2001.
    5. Redhead, P., The Invention of the Cavity Magnetron and its Introduction into Canada and the USA. Physics in Canada, 2001. 57(6): p. 321.
    6. Richtmyer, R., Dielectric resonators. Journal of Applied Physics, 1939. 10(6): p. 391-398.
    7. Cohn, S.B., Microwave bandpass filters containing high-Q dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 1968. 16(4): p. 218-227.
    8. W. F. Smith, 劉品均(譯), 施佑蓉(譯), “材料科學與工程,” 第三版, 高立圖書, (2005).
    9. Cahn, J.W. and R. Heady, Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles. Journal of the American Ceramic Society, 1970. 53(7): p. 406-409.
    10. Huppmann, W. and G. Petzow, Sintering processes. 1980, Plenum Press, New York, NY.
    11. German, R., Liquid Phase Sintering Plenum. New York, 1985.
    12. Jean, J. and C. Lin, Coarsening of tungsten particles in W-Ni-Fe alloys. Journal of materials science, 1989. 24(2): p. 500-504.
    13. Pozar, D.M., Microwave engineering. 2009: John Wiley & Sons.
    14. David M. Pozar “Microwave Engineering,” Addison-Wesley, (1998).
    15. Kajfez, D., Basic principles give understanding of dielectric waveguides and resonators. Microwave System News, 1983. 13: p. 152-161.
    16. Kajfez, D., A.W. Glisson, and J. James, Computed modal field distributions for isolated dielectric resonators. IEEE transactions on Microwave Theory and Techniques, 1984. 32(12): p. 1609-1616.
    17. 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華科技股份有限公司, 7.1998. P6-1.
    18. 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
    19. Carter, C.B. and M.G. Norton, Ceramic materials: science and engineering. 2007: Springer Science & Business Media.
    20. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, and S. B. Warner, "The science and design of engineering materials", Irwin Chicago, 1995.
    21. Liang, E.C., An Overview of High Q TE Mode Dielectric Resonators and Applications. Microwave journal, 2015. 58(2): p. 72-+.
    22. Sebastian, M.T. and H. Jantunen, Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008. 53(2): p. 57-90.
    23. Deliyannis, T., Y. Sun, and J.K. Fidler, Continuous-time active filter design. 1998: Crc Press.
    24. Geiger, R.L., P.E. Allen, and N.R. Strader, VLSI design techniques for analog and digital circuits. Vol. 90. 1990: McGraw-Hill New York.
    25. Grieg, D. and H. Engelmann, Microstrip-A new transmission technique for the klilomegacycle range. Proceedings of the IRE, 1952. 40(12): p. 1644-1650.
    26. Hong, J.-S.G. and M.J. Lancaster, Microstrip filters for RF/microwave applications. Vol. 167. 2004: John Wiley & Sons.
    27. Kompa, G., Practical microstrip design and applications. 2005: Artech House.
    28. K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
    29. Denlinger, E.J., Losses of microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 1980. 28(6): p. 513-522.
    30. Pucel, R.A., D.J. Masse, and C.P. Hartwig, Losses in microstrip. IEEE transactions on microwave theory and techniques, 1968. 16(6): p. 342-350.
    31. Hong, J.-S. and M.J. Lancaster, Cross-coupled microstrip hairpin-resonator filters. IEEE Transactions on Microwave theory and techniques, 1998. 46(1): p. 118-122.
    32. Sayidi, M. and M. Alaydrus, Designing of Hairpin-Line Band Pass filters for DCS, UMTS and LTE-Systems. InComTech. 6(3): p. 239-253.
    33. 邓哲, 程崇虎, 吕文俊, & 朱洪波. 微带发夹型谐振器滤波器的实验研究 (Doctoral dissertation).(2005).
    34. S. H. Cha: IEEE. Trans. MTT, vol.MTT-33, pp.519, 1985.
    35. Hakki, B. and P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques, 1960. 8(4): p. 402-410.
    36. Courtney, W.E., Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Transactions on Microwave Theory and Techniques, 1970. 18(8): p. 476-485.
    37. P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
    38. Kobayashi, Y. and M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques, 1985. 33(7): p. 586-592.
    39. Dejan. Z, J. Christian Sch¨on, Milena Rosi´c, Jelena Zagorac, Dragana Jordanov, Jelena Lukovi´ c, and Branko Matovic “Theoretical and Experimental Study of Structural Phases in CoMoO4,” Cryst. Res. Technol. 2017, 52, 1700069
    40. Zhang.Z, Liu. Y. D., Huang. Z. Y., Ren. L., Qi. X., Wei. X. L., Zhong. J. X, Facile hydrothermal synthesis of NiMoO 4@ CoMoO 4 hierarchical nanospheres for supercapacitor applications. Physical Chemistry Chemical Physics, 2015. 17(32): p. 20795-20804.
    41. Pullar, R., S. Farrah, and N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. Journal of the European Ceramic Society, 2007. 27(2-3): p. 1059-1063.
    42. Bensaid, H., El Bouari, A., Benmokhtar, S., Manoun, B., Bih, L., & Lazor, P., New molybdate Li2Co2− x Nix (MoO4) 3 (0⩽ x⩽ 2) materials with a lyonsite structure: X-ray diffraction and Raman spectroscopy studies. Journal of Molecular Structure, 2013. 1031: p. 152-159.
    43. Huang, C.-L., W.-R. Yang, and P.-C. Yu, High-Q microwave dielectrics in low-temperature sintered (Zn1− xNix) 3Nb2O8 ceramics. Journal of the European Ceramic Society, 2014. 34(2): p. 277-284.

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE