簡易檢索 / 詳目顯示

研究生: 陳志慶
Chen, Delphic
論文名稱: 奈米鋁材料塑性行為之探討
On The Plastic Behavior of Nanocrystalline Aluminum
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 114
中文關鍵詞: 奈米鋁機械性質電沉積
外文關鍵詞: nanocrystalline aluminum, electrodeposition, mechanical properties
相關次數: 點閱:87下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於科學的不斷發展,奈米技術在科技上的應用也逐漸增加,但是對於奈米材料機械性質的量測,目前主要仍是應用奈米探針以及其他的量測技術進行局部機械性質的量測,但是此類方法所測得之機械性質是否能夠代表整體,仍有爭議。而為了要探討奈米尺度下鋁奈米晶體變形行為,本研究利用模擬以及實驗的方式來探討晶粒大小對於變形行為之影響,在實驗部份,本實驗採取四種不同晶粒大小的鋁材來進行拉伸試驗分別是:1.以Bridgman法長成之單晶、2.利用退火的方式製造出2-3mm 之oligo晶粒、3. 利用退火的方式製造出0.1mm之oligo晶粒、以及4. 利用非水溶液電沉積法製作之奈米鋁晶體厚膜。
      另一方面,使用了光學微應變量測的方法來觀察試片表面之微應變分布,以觀察拉伸試驗中,試片表面的應變場,並以此為基礎,與拉伸試驗所得之結果比較。而電腦模擬方面則採用Taylor模型並藉由程式視覺化變形過程之織構變化,並以此作為模擬鋁多晶變形之基礎。
      實驗結果顯示,利用電沉積方式所生長的鍍膜其晶粒大小在20~30nm之間,且無織構,而由拉伸試驗的結果看出,鋁晶體降伏前所能達到之最大應變,隨著晶粒縮小而減少。此外,利用光學微應變方式所解析出試片之應變場則顯示了,單晶的異向性特徵,以及當試片尺寸與晶粒大小相近時,局部會出現類似單晶變形局部應變集中的異向性特徵,因此試片的尺寸與晶粒大小的關係會嚴重的影響著實驗的結果,使用不當的試片尺寸,將會造成結果不正確。而由Taylor模型模擬拉伸試驗織構演化則可以看出,在變形之後,逐漸出現的βfiber織構特徵,但是在奈米鋁晶粒上卻無法測得此織構,因此,推出奈米鋁晶粒在變形時不是以差排的滑移作為變形機制。

      Mechanical Properties of nano materials are strongly influenced by measurement techniques. The application of nanoindenter is used to investigate the local mechanical properties of the material. It is still an open question that these properties of the local could represent these of bulk material. In order to investigate the deformation behavior of nanocrystalline aluminum, in this study two different approaches were used, namely Taylor model simulation and tensile test. Four different sized grains were used for the tensile test, Single Crystal, 2-3mm sized oligo grain, 0.1mm sized oligo grain, and 20-30nm sized nanocrystalline aluminum.
      The optical microstrain measurement were used to observe the microstrain distribution on the sample surface. As for the simulation, Taylor model is applied in this study to show the texture evolution.
      The results indicate that the grain size of electrodeposited film is about 20~30 nm and it is texture free. The maximum elongation before necking decreases with decreasing grain size. The optical microstrain distributions show that the single crystal exhibits strong anisotropic deformation properties, and the 2-3mm sized oligo grain also shows this phenomenon in the local region. Therefore, the grain size and the specimen size could affect the mechanic properties. After tensile deformation simulation, β-fiber texture is predicted by using Taylor Model. However, under tensile test there is no texture observed in nanocrystalline aluminum. This suggests that dislocation slip is not the deformation mechanism of nanocrystalline aluminum.

    中文摘要.............................................................I 英文摘要............................................................III 誌謝....................................................................V 第一章、前言....................................................1 第二章、相關理論............................................3     2.1模擬理論................................... ....4      2.1.1織構及織構分析方式.............5      2.1.2 塑性變形模擬.......................21     2.2 實驗相關理論..............................33      2.2.1 數位光學微應變量測...........33      2.2.2 非水溶液電沉積法...............39      2.2.3 晶粒大小量測.......................41 第三章、實驗方法及實驗步驟     3.1 實驗材料及試片準備..................46      3.1.1 Oligo晶粒材鋁材....................46      3.1.2奈米晶粒鋁材........................49     3.2 實驗方法......................................51      3.2.1 單晶.......................................52      3.2.2 oligo晶粒................................52      3.2.3 奈米晶粒...............................53     3.3 Taylor塑性模擬.............................54 第四章、實驗結果     4.1 鍍層晶粒大小..............................56     4.2拉伸試驗結果...............................65     4.3 微應變分布..................................87     4.4 Taylor塑性模擬.............................94 第五章、討論     5.1內部性質之影響.........................104     5.2 外部性質之影響........................107     5.3 Taylor模型預測...........................111 第六章、結論.................................................113 參考文獻

    1 G. I. Taylor: Plastic Strain in Metals ,Inst. Metals., 62 (1938), p.307-324.

    2 V. Randle, and O. Engler :Introduction to Texture Analysis, Z. Metallk., 56(1965), p.872.

    3 H. -J. Bunge, :In Preferred Oeirntation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis(1985) (Ed. H.-R. Wenk), Academic Press Inc., U.K. , p.73.

    4 G. B. Dantzig : Linear Programming and Extension, Princeton University Press, Princeton New Jersey, 1963.

    5 D. A. Kalidindi, C. A. Bronkhorst,, L. Anand : Crysyallographic texture evolution in bulk deformation processing of f.c.c. metal. In: J. Mech. Phys. Solids 40 (1992), p.536~569.

    6 郭瑞昭, 童士恒, 施明祥, 陳志慶 : 數位光學測量於固體材料變形分析之應用, 九十四年電子計算機於土木水利應用研討會.

    7 T. C. Chu, W. F. Ramsom., M. A. Sutton, and W. H. Peters: Application of Digital-Image-Correlation Technique to Experimental Mechanics, Experimental Mechanics 25(1985), p.232-244.

    8 H. Lehmkuhl, K. Mehler and U. Landau, Adv. Electrochem. Sci. Eng. 3 (1994), p.163.

    9 C. W. Tobias , Advances in Electrochemistry and Electrochemical Engineering, New York, Interscience ,1967.

    10 T. Garai : Electro-Deposition Of Aluminium In Non-Aqueous Solvents., Mat. Chem. Phys. 8(1983), p.399.

    11 K. Ziegler and H. Lehmkuhl, : Die Elektrolytische Abscheidung von Aluminium aus organischen Komplexverbindungen, Z. Anorg. Allg. Chem. 283(1956), p.414.

    12 U.S. Patent 4417954 ,1983.

    13 D. E. Couch and A. Brenner, J. electrochem. Soc. 99(1959), p.234.

    14 A. Brenner and D. E. Couch, U.S. Patent 2651608, 1953.

    15 A. Brenner : Electrodeposition of Alloys, J. electrochem. Soc. 106 (1959), p.148.

    16 G. A. Capuano and W. G. Davenport, J.electrochem. Soc, 118(1971), p.1688.

    17 G. A. Capuano and W. G. Davenport, “Plating Aluminum Onto Steel Or Copper From Alkyl Benzene Electrolytes.”Plating 60(1973), p.251.

    18 F. H. Hurley and T. P. Wier, : The electrodeposition of aluminium from nonaqueous solutions at room temperature, J. electrochem.Soc. 98 (1951), p.207.

    19 E. Peled and E. Gileadi, : electroplating of aluminum from aromatic hydrocarbons, Plating 62 (1975), p.342.

    20 J. Fransaer, E. Leunis, : Aluminium composite coatings containing micrometre and nanometre-sized particles electroplated from a non-aqueous electrolyte”, Journal of Applied Electrochemistry, 32(2002), p.123-128.

    21 L. Legrand, M.Heintz, : Sulfone-based electrolytes for aluminum electrodeposition, Electrochimica Acta, 40(1995) , p.1711-1716.

    22 R. K. Harris and B. E. Mann : NMR and the periodic table”, Academic Press, London, 1978.

    23 J. W. Akitt, Annu. Rep. NMR Spectrosc. 5A (1972), p.465.

    24 J. J. Dechter, : Anylysis of the beta transition of linear and branched polyethylenes by carbon-13 NMR, Prog. Inorg. Chem. 29(1982), p.285.

    25 L. Legrand, A. Tranchant, R. Messina, F. Romain, : Raman Study of Aluminum Chloride - Dimethylsulfone Solutions, Inorganic Chemistry, 35(1996), p.1310.

    26 B. D. Cullity and S. R. Stock., Elements of X-Ray Diffraction 3rd edition. Prentice Hall, New Jersey, 2000.

    27 T. Böhlke : Chrystallographic Texture Evolution and Elastic Anisotropy: Simulation, Modeling, and Applications, PhD thesis, 2000.

    28 S. Li, O. Engler, and P.V. Houtte : Plastic anisotropy and texture evolution during tensile test of extruded aluminum profiles, Modelling Simul. Mater. Sci. Eng. 13(2005), p.783–795.

    29 A. Kumar , P. R. Dawson : Modeling crystallographic texture evolution with finite elements over neo-Eulerian orientation spaces, Comput. Methods Appl. Mech. Engrg., 153(1998), p.259-302.

    30 M. A. Meyers, : Mechanical properties of nanocrystalline materials, Progress in Materials Science, 51(2006), p.427–556.

    31 F. Breutinger, : Does nanocrystalline Cu deform by Coble creep
    Near room temperature?, Materials Science and Engineering A387–389(2004), p.585–589.

    下載圖示 校內:2007-07-14公開
    校外:2007-07-14公開
    QR CODE