| 研究生: |
沈鳳麒 Shen, Feng-Chi |
|---|---|
| 論文名稱: |
具非接觸式供電監控單元之植入型功能電刺激器 Implanted Functional Electrical Neurostimulator with Contactless Power and Signal Transmission Unit |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 非接觸式電能傳輸 、植入型電刺激器 、雙向資料傳輸 |
| 外文關鍵詞: | Contactless power transmission, Implanted electrical stimulator, Bi-directional data transmission |
| 相關次數: | 點閱:122 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在應用感應電能傳輸技術,研製具非接觸式供電監控單元之植入型功能電刺激器,並於架構中加入雙向資料傳輸機制,其特點在於將電刺激器共構於骨折手術中所植入之骨釘內。於操作頻率上選用頻段中心為13.56 MHz之射頻頻率以縮小線圈體積,並根據操作頻率選擇合適之激勵電路,接著利用磁場模擬軟體分析印刷電路板結構磁通密度分布與觀察改變線圈圈數之耦合係數變化,藉此決定體外側、植入側線圈規格。電刺激策略上採用定電流刺激模式,首先於體外側電路加入移幅鍵控調變電路,可根據組織不同復健時期之情形將控制訊號予以植入側電刺激電路俾便改變刺激波形;植入側端加入移載鍵控調變機制,得使患者監控體內狀況而選用適當刺激波形,兩種調變皆允許同一組線圈雙向傳輸資料,有效減少電路體積。當仿體厚度為1.5公分時,於中心位置有最大電能傳輸效率54.1%,當系統達到最大軸向位移下,電能傳輸效率仍能維持於38.2%,以確保植入式骨釘電刺激器之完整運作。
The thesis is aimed to use the contactless power transfer technique combined with electrical stimulation and bi-directional data transmission mechanisms, finally embedded into bone nails. At the first of this thesis, operating frequency has been chosen at 13.56 MHz to reduce the coils volume, different forms of inductive coils are stimulated and analyzed to improve the magnetic field distribution. The strategy of stimulation is current mode, and command data will be supplied to the implantable stimulation module by telemetry utilizing an amplitude shift keying (ASK) to change the output stimulation waveform. For internal side, backward data telemetry was designed by using the reflected impedance property of an inductive couple, which is called load shift keying (LSK), two modulation mechanisms allows data transmission through by using one coupling structure. The highest power efficiency is 54.1% when the gap is 1.5 cm. The efficiency is 38.2% when the coils has maximum misalignment.
[1]R. Dai, R. Stein, J. Andrew, K. B. James, and M. Wieler, “Application of tilt sensor in functional electrical stimulation,” IEEE Trans. Rehabil. Eng., vol. 4, no. 2, pp. 63-72, Jun. 1996.
[2]R. Riener and T. Fuhr, “Patient-driven control of FES supported standing up: a stimulation study,” IEEE Trans. Rehabil. Eng., vol. 6, no. 2, pp. 113-124, Jun. 1988.
[3]G. B. Joung and B. H. Cho, “An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer,” IEEE Trans., Power Electron., vol. 13, no. 6, pp. 1013 -1022, Nov. 1998.
[4]S. Khosravani, N. Lahimgarzadeh, and A. Maleki, “Developing a stimulator and interface for FES-cycling rehabilitation system,” in Proc. IEEE ICBME’11, 2011, pp. 175-180.
[5]M. S. Malagodi, M. W. Ferguson-Pell, and R. D. Masiello, “A functional electrical stimulation exercise system designed to increase bone density in spiral coil injured individuals,” IEEE Trans. Rehabil. Eng., vol. 1, no. 4, pp. 213-219, Dec. 1993.
[6]H. Sakamoto, K. Harada, S. Washimiya, and Y. Matstuda, “A non-contact charge system of electric vehicle in the next generation,” in Proc. IEEE Magn., 2003, pp. ER-16.
[7]U. K. Madawala, D. J. Thrimawithana, and N. Kularatna, “An ICPT super-capacitor hybrid system for surge-free power transfer,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3287-3297, Dec. 2007.
[8]W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.
[9]S. Y. Hui, “Planar wireless charging technology for portable electronic products and Qi,” in Proc. IEEE, vol. 101, no. 6, pp. 1290-1301, Mar. 2013.
[10]D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE NEMS’10, 2010, pp. 604-647.
[11]C. S. Lin, S. G. Lin, C. F. Chang, H. H. Lai, and L. R. Chen, “Model of contactless power transfer system for linear track,” in Proc. IEEE PEDS’10, 2010, pp. 1075-1079.
[12]J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line electric vehicles,” in Proc. IEEE ECCE’10, 2010, pp. 647-651.
[13]S. Ahn and J. Kim, “Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle,” in Proc. IEEE EUCAP’11, 2011, pp. 3979-3982.
[14]K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. PCCON’02, 2002, pp. 227-232.
[15]K. Finkenzeller, RFID Handbook. 2nd ed., Wiely, 2003.
[16]W. T. Liberson, H. J. Holmquest, D. Scot, M. Dow, and H. Illinois, “Functional electrotherapy: stimulation of the personal nerve synchronized with the swing phase of the gait of hemiplegic patients,” in Proc. Archives of Physical Medicine &Rehabilitation, 1961, pp. 101-105.
[17]S. Shapiro, R. Borgens, R. Pascuzzi, K. Roos, M. Groff, S, Purvines, R. B. Rodgers, S. Hagy, and P. Nelson, “Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial,” J. Neurosurgery, vol. 2, no. 1, pp. 1-3, Jan. 2005.
[18]D. B. Shire, S. K. Kelly, J. Chen, P. Doyle, M. D. Gingerich, S. F. Cogan, W. A. Drohan, et al., “Development and implantation of a minimally invasive wireless subretinal neurostimulator,” IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2502-2511, Oct. 2009.
[19]J. F. Rizzo, D. B. Shire, S. K. Kelly, P. Troyk, M. Gingerich, B. McKee, A. Priplata, J. Chen, et al., “Development of the boston retinal Prosthesis,” in Proc. IEEE EMBS’11, 2011, pp. 3135-3138.
[20]G. J. Tortora and M. Nielsen, Principles of human anatomy, 8th ed., Benjamin/Cummings Science Publishing, 1999.
[21]http://en.wikipedia.org/wiki/Bone_healing, reference date: 2013/11
[22]E. Fukuda and I. Yasuda, “On the piezoelectric effect of bone,” J. Phys. Soc. Japan, vol. 12, no. 10, pp.1158-1162, 1957.
[23]C. A. L. Basset, R. J. Pawluk, and R. O. Becker, “Effect of electric currents on bone in vivo,” Nature, vol. 204, pp. 652-654, 1964.
[24]M. H. Shamos and L. S. Lavine, “Experimental model for studying the effect of electric current on bone in vivo,” Nature, vol. 224, pp. 1112-1113, 1969.
[25]P. R. Supronowicz, K. R.Ullmann, P. M. Ajayan, B. P. Arulanandam, D. W. Metzger, and R. Bizios, “Electrical stimulation enhances cellular/molecular functions of osteoblasts relevant to new bone formation in vitro,” in Proc. IEMBS’01, 2001, pp. 2979-2980.
[26]D. N. Rushton, “Functional electrical stimulation,” Physiol. Meas., vol. 18, no. 4, pp. 241-275, 1997.
[27]O. Macherey, A. V. Wieringen, R. P. Carlyon, J. M. Deeks, and J. Wouters, “Asymmetric pulses in cochlear implants: effect of pulse shape, polarity, and rate,” JARO, vol. 7, pp. 253-266, May 2006.
[28]F. Sato, T. Nomoto, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electric stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, Jul. 2004.
[29]H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
[30]A. Qusba, A. Kumar, J. H. So, G. J. Hayes, M. D. Dickey, and G. Lazzi, “On the design of microfluidic implant coil for flexible telemetry system,” IEEE Sensor J., vol. 14, no. 4, pp. 1074-1080, Apr. 2014.
[31]http://www.motc.gov.tw/post/home.jsp?id=888&websitelink=artwebsite.jsp&parentpath=0,364,885, reference date: 2013/7
[32]ICNIRP, “Guidelines for limiting exposure to time-varying electric magnetic, and electromagnetic fields (up to 300GHz),” Health Physics, vol. 74, 1998.
[33]N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168-176, Jun. 1975.
[34]C. M. Zierhofer and E. S. Hochmair, “High-efficiency coupling insensitive transcutaneous power and data transmission via an inductive link,” IEEE Trans. Biomed. Eng., vol. 37, no. 7, pp. 716-722, Jul. 1990.
[35]J. Saleem, A. Majid, R. Ambatapudi, H. B. Kotte, and K. Bertilsson, “Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 431-437, May 1999.
[36]B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, Feb. 2004.
[37]U. M. Jow and M. Ghovanloo, “Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 5, pp. 301-310, Oct. 2010.
[38]http://en.wikipedia.org/wiki/Gel_electrophoresis, reference date: 2014/1
[39]T. Sowlati, C. Andre, and T. Salama, “Low voltage high efficiency GaAs class E power amplifiers for wireless transmitters,” IEEE J. Solid-State Circuits, vol. 30, no. 10, pp. 1074-1080, Oct. 1995.
[40]P. R. Troyk and M. A. K. Schwan, “Closed loop class E transcutaneous power and data link for microimplants,” IEEE Trans. Biomed. Eng., vol. 39, no. 6, pp. 589-599, Jun. 1992.
[41]F. H. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuits and Systems, vol. CAS-24, no. 12, pp. 725-735, Dec. 1977.
[42]L. H. Jung, P. B. Preston, R. Hessler, T. Lehmann, G. J. Suaning, and N. H. Lovell, “A dual band wireless power and FSK data telemetry for biomedical implanted,” in Proc. IEEE EMBS’07, 2007, pp. 6596-6599.
[43]C. M. Zierhofer, “A class E tuned power oscillator for inductive transmission of digital data and power,” in Proc. IEEE Electrotechnical, 1991, pp. 789-792.
[44]W. Xu, Z. Luo, and S. Sonkusale, “Fully digital BPSK Demodulator and multilevel LSK back telemetry for biomedical implant transceivers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 9, pp. 714-718, Sep. 2009.
[45]B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, “A single channel implantable microstimulator for functional neuromuscular stimulation,” IEEE Trans. Biomed. Eng., vol. 44, no. 10, pp. 909-920, Oct. 1997.
[46]Z. Tang, B. Smith, J. H. Schild, and P. H. Peckham, “Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator,” IEEE Trans. Biomed. Eng., vol. 42, no. 5, pp. 524-528, May 1995.
[47]M. Ghovanloo and S. Atluri, “An integrated full-wave CMOS rectifier with built-in back telemetry for RFID and implantable biomedical applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3328-3334, Nov. 2008.
[48]Y. Hu, J. G. Gervais, and M. Sawan, “High power efficiency inductive link with full duplex data communication,” in Proc. IEEE ICECS’02, 2002, pp. 359-362.
[49]陳智崇,發展雙向無線生醫微系統用以生理訊號之量測,國立成功大學醫學工程研究所碩士論文,2004年。
[50]童子原,電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製,國立成功大學電機工程學系碩士論文,2010年。
[51]劉彥田,非接觸式射頻電能傳輸技術於植入式神經電刺激器之研究,國立成功大學電機工程學系碩士論文,2010年。
[52]張華敬,電動搬運載具用非接觸式三相線型感應工電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[53]林哲立,植入式神經電刺激器之非接觸式射頻饋電電路之研製,國立成功大學電機工程學系碩士論文,2013年。