簡易檢索 / 詳目顯示

研究生: 翁慧凌
Weng, Hui-Ling
論文名稱: 色度可調變紫外光有機發光二極體之光電特性研究
The Researches on the Optoelectric Characteristics of Color-Tunable Ultraviolet Organic Light Emitting Devices
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 紫外光有機發光二極體微共振腔激態複合物導納頻譜
外文關鍵詞: UV-OLED, micro-cavity, eletroplex, admittance spectroscopy
相關次數: 點閱:128下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要為製作紫外光有機發光二極體元件,並應用其元件特性,使之激發色彩轉換層,製備一簡單之白光發光二極體元件。
      論文主要分為三大部分,第一部份為有機層材料厚度對紫外光元件影響及其元件的特性。第二部份為陽極緩衝層對紫外光元件的影響,並利用導納分析手法,探討陽極緩衝層修飾金屬和有機層界面的作用。第三部分為紫外光元件之應用。
      由實驗結果發現:以結構為ITO/MoO3/CBP/TPBi/LiF/Al的紫外光有機發光二極體元件具有微共振腔效應;並在CBP與TPBi界面處產生電致激態複合物,使得在高電壓下有電致發光頻譜寬化的現象。利用導納分析的手法,證實陽極緩衝層可有效降低元件之串聯電阻。

      In this thesis, we focused on how to fabricate a simple-structure bilayer ultraviolet organic light emitting diode (UV-OLED). Furthermore, the UV-OLEDs were applied as white light source by color conversion materials. Consequently, a white organic light emitting diode was .
      In the first part of this search, CBP and TPBi thin films were deposited with different thickness to investigate the characteristics of the UV-OLED. At the second part, an anode buffer layer was also deposited to investigate the effect on the characteristics of the devices. Furthermore, the admittance spectroscopy proved useful in interface modification because of anode buffer layer. In the last part, we discussed the applications of UV-OLED.
      In this study, we report on the red-shift of UV-OLED with various CBP and TPBi thickness by micro-cavity effects. In addition, the device with broadband EL spectrum at high voltages has been demonstrated because of eletroplex effect in the interface between CBP and TPBi layers. In the anode buffer layer study, the series resistance of UV-OLED with anode buffer has been reduced by admittance spectroscopy investigations.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 緒論 1 1-1 前言 1 1-2 紫外光元件之文獻回顧 4 1-3 實驗動機 6 理論基礎 8 2-1 螢光理論 8 2-2 有機發光二極體之發光原理: 11 2-3 元件電流限制 12 2-3-1 電荷注入 13 2-3-2 電荷傳播 15 2-4 有機發光二極體的結構 21 2-5 有機發光二極體材料 23 2-5-1 電洞注入與緩衝層材料 23 2-5-2 電洞傳輸材料 24 2-5-3 電子輸材料及發光層主體材料 25 2-5-4 發光層客體材料 25 2-5-5 電極 26 2-6 具微共振腔型有機電激發光元件 28 2-6-1具微共振腔型有機電激發光元件之基本原理 28 2-6-2 微共振腔光學模型 28 2-7 導納頻譜原理 29 實驗步驟與方法 31 3-1 有機電激發光元件製程分類 31 3-2 真空熱蒸鍍系統設備(Thermal Evaporation System) 32 3-3 實驗材料 33 3-4 ITO基板前置處理之實驗部驟 34 3-5 真空蒸鍍之實驗步驟 36 3-6 單體沉積速率之測定 37 3-7 OLED單層、多層元件之電流、電壓與亮度關係曲線圖量測 37 3-8 導納頻譜量測 38 結果與討論 39 4-1 有機層材料厚度對紫外光元件影響之分析 39 4-1-1 調變有機層厚度對有機發光元件特性之影響 39 4-1-2 調變有機層厚度對有機發光元件頻譜之影響 42 4-1-3 調變不同電壓對有機發光元件頻譜之影響 46 4-1-4 載子復合區 52 4-2 陽極緩衝層對紫外光元件影響之分析 55 4-2-1 調變陽極緩衝層對有機發光元件特性之影響 56 4-2-2 調變陽極緩衝層對CBP薄膜特性的影響 59 4-3 紫外光有機發光元件之應用 64 4-3-1 色彩轉換層 64 4-3-2 紫外光元件激發色彩轉換層之白光OLED元件 68 結論與未來展望 72 5-1 結論 72 5-2 未來展望 73 參考文獻 74

    [1]M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, pp. 2042-2043, 1963.
    [2] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied Physics Letters, vol. 48, p. 183, 1986.
    [3] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, "Light-emitting diodes based on conjugated polymers," Nature, vol. 347, pp. 539-541, 1990.
    [4] Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, "Visible-light electroluminescent diodes utilizing poly (3-alkylthiophene)," Jpn. J. Appl. Phys, vol. 30, pp. L1938-L1940, 1991.
    [5] Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, "Blue electroluminescent diodes utilizing poly (alkylfluorene)," Jpn. J. Appl. Phys, vol. 30, pp. L1941-L1943, 1991.
    [6] C.-H. Yuan, S. Hoshino, S. Toyoda, H. Suzuki, M. Fujiki, and N. Matsumoto, "Room-temperature near-ultraviolet electroluminescence from a linear silicon chain," Applied Physics Letters, vol. 71, pp. 3326-3328, 1997.
    [7] C. F. Qiu, L. D. Wang, H. Y. Chen, M. Wong, and H. S. Kwok, "Room-temperature ultraviolet emission from an organic light-emitting diode," Applied Physics Letters, vol. 79, p. 2276, 2001.
    [8] K. Okumoto and Y. Shirota, "Development of high-performance blue–violet-emitting organic electroluminescent devices," Applied Physics Letters, vol. 79, p. 1231, 2001.
    [9] L. Zou, V. Savvate’ev, J. Booher, C. H. Kim, and J. Shinar, "Combinatorial fabrication and studies of intense efficient ultraviolet–violet organic light-emitting device arrays," Applied Physics Letters, vol. 79, p. 2282, 2001.
    [10] S. Hamwi, T. Riedl, and W. Kowalsky, "An organic p-i-n homojunction as ultra violet light emitting diode and visible-blind photodiode in one," Applied Physics Letters, vol. 99, p. 053301, 2011.
    [11] A. Mikami, Y. Mizuno, and S. Takeda, "High Efficiency Ultraviolet Light Emitting Organic Devices and Its Application to White Light Source," in SID Symposium Digest of Technical Papers, 2008, pp. 215-218.
    [12] 林長青 and 韓欣廷, "建構整合 QFD, TRIZ 及 ANP 研發創新工具之產品概念選擇決策程序: 以智慧型手機為例," 商略學報, vol. 4, pp. 205-228, 2012.
    [13] OLED : 有機電激發光材料與元件 = OLED : organic electroluminescent materials & devices, 初版 ed. 臺北市 :, 2005.
    [14] D. A. Neamen, "Semiconductor physics and devices," vol. 2nd, p. 319, 1994.
    [15] S. M. Sze and K. K. Ng, Physics of semiconductor devices: Wiley-interscience, 2006.
    [16] E. H. Rhoderick and R. H. Williams, Metal-semiconductor contacts: Clarendon Press Oxford, 1988.
    [17] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 119, pp. 173-181, 1928.
    [18] A. J. Heeger, I. Parker, and Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling," Synthetic Metals, vol. 67, pp. 23-29, 1994.
    [19] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. Heeger, "Enhanced performance of polymer light‐emitting diodes using high‐surface area polyaniline network electrodes," Journal of Applied Physics, vol. 77, pp. 694-698, 1995.
    [20] H. Vestweber, J. Pommerehne, R. Sander, R. Mahrt, A. Greiner, W. Heitz, and H. Bässler, "Majority carrier injection from ITO anodes into organic light-emitting diodes based upon polymer blends," Synthetic Metals, vol. 68, pp. 263-268, 1995.
    [21] P. Davids, S. M. Kogan, I. Parker, and D. Smith, "Charge injection in organic light‐emitting diodes: Tunneling into low mobility materials," Applied Physics Letters, vol. 69, pp. 2270-2272, 1996.
    [22] D. Khramtchenkov, H. Bassler, and V. Arkhipov, "A model of electroluminescence in organic double‐layer light‐emitting diodes," Journal of Applied Physics, vol. 79, pp. 9283-9290, 1996.
    [23] D. Pinner, R. Friend, and N. Tessler, "Transient electroluminescence of polymer light emitting diodes using electrical pulses," Journal of Applied Physics, vol. 86, pp. 5116-5130, 1999.
    [24] P. Burrows, Z. Shen, V. Bulovic, D. McCarty, S. Forrest, J. Cronin, and M. Thompson, "Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices," Journal of Applied Physics, vol. 79, pp. 7991-8006, 1996.
    [25] M. Meier, S. Karg, and W. Riess, "Light-emitting diodes based on poly-p-phenylene-vinylene: II. Impedance spectroscopy," Journal of Applied Physics, vol. 82, pp. 1961-1966, 1997.
    [26] A. Campbell, D. Bradley, and D. Lidzey, "Space-charge limited conduction with traps in poly (phenylene vinylene) light emitting diodes," Journal of Applied Physics, vol. 82, pp. 6326-6342, 1997.
    [27] M. Dongge, I. Hummelgen, B. Hu, and F. Karasz, "Charge carrier mobility in electroluminescent alternating block copolymers," Journal of Applied Physics, vol. 86, pp. 3181-3186, 1999.
    [28] Y. He, R. Hattori, and J. Kanicki, "Current-source a-Si: H thin-film transistor circuit for active-matrix organic light-emitting displays," Electron Device Letters, IEEE, vol. 21, pp. 590-592, 2000.
    [29] D. Ma, I. Hummelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F. Karasz, "Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio," Journal of Applied Physics, vol. 87, pp. 312-316, 2000.
    [30] K.-C. Kao and W. Hwang, Electrical transport in solids: with particular reference to organic semiconductors: Taylor & Francis, 1979.
    [31] W. Helfrich, "Physics and Chemistry of the Organic Solid State, edited by D," Fox, MM Labes, and A. Weissberger (Interscience, New York, 1967), vol. 3, p. 1.
    [32] H. Martens, J. Huiberts, and P. Blom, "Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes," Applied Physics Letters, vol. 77, pp. 1852-1854, 2000.
    [33] P. W. Blom and M. Vissenberg, "Charge transport in poly ( p-phenylene vinylene) light-emitting diodes," Materials Science and Engineering: R: Reports, vol. 27, pp. 53-94, 2000.
    [34] P. Blom, H. Martens, and J. Huiberts, "Charge transport in polymer light-emitting diodes," Synthetic Metals, vol. 121, pp. 1621-1624, 2001.
    [35] J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Malliaras, S. A. Carter, and L. Bozano, "Charge transport processes in organic light-emitting devices," Synthetic Metals, vol. 111, pp. 289-293, 2000.
    [36] I. Campbell, D. Smith, C. Neef, and J. Ferraris, "Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics," Applied Physics Letters, vol. 74, pp. 2809-2811, 1999.
    [37] L. Hung, L. Zheng, and M. Mason, "Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF3," Applied Physics Letters, vol. 78, pp. 673-675, 2001.
    [38] Y. Qiu and L. Gao, "Wang, and DQ Zhang," Synth. Met, vol. 130, p. 235, 2002.
    [39] Z. Deng, X. Ding, S. Lee, and W. Gambling, "Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers," Applied Physics Letters, vol. 74, pp. 2227-2229, 1999.
    [40] J. Simmons and M. Tam, "Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions," Physical Review B, vol. 7, p. 3706, 1973.
    [41] G. P. Owen, J. Sworakowski, J. M. Thomas, D. F. Williams, and J. O. Williams, "Carrier traps in ultra-high purity single crystals of anthracene," J. Chem. Soc., Faraday Trans. 2, vol. 70, pp. 853-861, 1974.
    [42] A. Campbell, M. Weaver, D. Lidzey, and D. Bradley, "Bulk limited conduction in electroluminescent polymer devices," Journal of Applied Physics, vol. 84, pp. 6737-6746, 1998.
    [43] S. Lee, K. Yoshino, J. Park, and Y. Park, "Extrinsic photoconductivity in poly (3-dodecylthiophene) sandwich cells," Physical Review B, vol. 61, p. 2151, 2000.
    [44] C. Wu, J. Chun, P. Burrows, J. Sturm, M. Thompson, S. Forrest, and R. Register, "Poly (p‐phenylene vinylene)/tris (8‐hydroxy) quinoline aluminum heterostructure light emitting diode," Applied Physics Letters, vol. 66, pp. 653-655, 1995.
    [45] G. Jung, C. Pearson, L. Horsburgh, I. Samuel, A. Monkman, and M. Petty, "The effect of insulating spacer layers on the electrical properties of polymeric Langmuir-Blodgett film light emitting devices," Journal of Physics D: Applied Physics, vol. 33, p. 1029, 2000.
    [46] Z. Deng, X. Ding, S. Lee, and W. Gambling, "Enhanced brightness and efficiency in organic electroluminescent devices using SiO buffer layers," Applied Physics Letters, vol. 74, pp. 2227-2229, 1999.
    [47] C. Chen, C. Tang, J. Shi, and K. Klubek, "Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence," Thin Solid Films, vol. 363, pp. 327-331, 2000.
    [48] 謝明達, "有機摻雜半導體與非晶矽半導體之導納分析模型建立與電性研究 Electric Characteristics of Organic Doping Semiconductor and Amorphous Semiconductor Elucidated by Admittance spectroscopy," 交通大學電子物理系所學位論文, pp. 1-156, 2009.
    [49] V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, "Weak microcavity effects in organic light-emitting devices," Physical Review B, vol. 58, p. 3730, 1998.
    [50] T. Granlund, L. A. Pettersson, M. R. Anderson, and O. Inganas, "Interference phenomenon determines the color in an organic light emitting diode," Journal of Applied Physics, vol. 81, pp. 8097-8104, 1997.
    [51] Z. H. Kafafi, Organic electroluminescence vol. 94: CRC Press, 2005.
    [52] D. Virgili, M. Cocchi, V. Fattori, C. Sabatini, J. Kalinowski, and J. Williams, "Highly efficient exciplex phosphorescence from organic light-emitting diodes," Chemical physics letters, vol. 433, pp. 145-149, 2006.
    [53] H. Zhu, Z. Xu, F. Zhang, S. Zhao, and D. Song, "Exciplex or electroplex emissions from the interface between aromatic diamine and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline?," Applied Surface Science, vol. 254, pp. 5511-5513, 2008.
    [54] J. Kalinowski, M. Cocchi, P. Di Marco, W. Stampor, G. Giro, and V. Fattori, "Impact of high electric fields on the charge recombination process in organic light-emitting diodes," Journal of Physics D: Applied Physics, vol. 33, p. 2379, 2000.
    [55] 文亮, 李福山, and 郭太良, "基于 PVK: TPD/Bphen 界面激基复合物和电致激基复合物发射的 WOLED."中国科技论文在线
    [56] F. Zhang, S. Zhao, D. Zhao, W. Jiang, Y. Li, G. Yuan, H. Zhu, and Z. Xu, "Electroplex emission from bi-layer blue emitting organic materials," Physica Scripta, vol. 75, pp. 407-410, 2007.
    [57] Y.-M. Wang, F. Teng, Z. Xu, Y.-B. Hou, Y.-S. Wang, and X.-R. Xu, "Enhancement of electroplex emission by using multi-layer device structure," Applied Surface Science, vol. 243, pp. 355-359, 2005.
    [58] L. Wen, F. S. Li, and T. L. Guo, "White Organic Light-Emitting Diode Based on Organic Quantum Well Structure," Materials Science Forum, vol. 694, pp. 645-649, 2011.
    [59] H. You, Y. Dai, Z. Zhang, and D. Ma, "Improved performances of organic light-emitting diodes with metal oxide as anode buffer," Journal of Applied Physics, vol. 101, p. 026105, 2007.
    [60] M.-T. Hsieh, C.-C. Chang, J.-F. Chen, and C. H. Chen, "Study of hole concentration of 1,4-bis[N-(1-naphthyl)-N[sup ʹ]-phenylamino]-4,4[sup ʹ] diamine doped with tungsten oxide by admittance spectroscopy," Applied Physics Letters, vol. 89, p. 103510, 2006.
    [61] W. Oldham and S. Naik, "Admittance of p- n junctions containing traps," Solid-State Electronics, vol. 15, pp. 1085-1096, 1972.
    [62] S. Tsang, S. So, and J. Xu, "Application of admittance spectroscopy to evaluate carrier mobility in organic charge transport materials," Journal of Applied Physics, vol. 99, pp. 013706-013706-7, 2006.

    無法下載圖示 校內:2016-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE