| 研究生: |
趙善任 Chao, Shan-Jen |
|---|---|
| 論文名稱: |
應用於非接觸式電動載具充電平台之改良型三相感應耦合結構 Modified Three-Phase Inductive Coupled Structure for Contactless Charging Platform of Electric Vehicles |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 三相感應耦合結構 、非接觸式充電平台 、電動載具 |
| 外文關鍵詞: | Three-Phase Inductive Coupled Structure, Contactless Charging Platform, Electric Vehicle |
| 相關次數: | 點閱:150 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係研究具高效率之電動載具用三相非接觸式感應充電平台系統,並參照SAE J-2954感應充電規範與充電建議標準,研製具三相充電感應耦合結構電動載具用非接觸式感應充電平台系統。其特點係以三相三線圈結構為基礎,擴接繞製成巢狀分佈之感應耦合結構,以三相供電方式產生均勻磁場,利用磁通相互彌補之優點,提升感應充電平台電能傳輸能力和錯位容忍度,並於充電平台次級側加入鐵芯導引磁通至電能拾取器上,達到改善電能傳輸效率之目的。文中首先運用有限元素分析法磁場模擬軟體針對不同感應耦合結構拓樸作分析模擬和討論,進而提出三相巢狀式感應耦合結構,搭配周邊電路建構整體系統並透過實驗與模擬驗證系統可行性。經實驗量測,系統於氣隙2cm下,電能傳輸效率約為87.3%,最大電能傳輸能力約為900W。
This thesis is aimed at designing the three-phase high efficiency contactless inductive charging platform for electric vehicles based on inductive power transmission techniques which is suitable for SAE J-2954. The cellular inductive platform which comprised of three-phase coils with ferrite backing is proposed for improving the uniform magnetic field distribution over the charging surface, effectiveness for stabilizing the amount of the transmitted power against the fluctuating load and have good tolerance to misalignment that help transfer power efficiently. 3-D finite-element analysis modeling is used to optimize the different inductive coupled structure, with the simulated results and verified by the experiments, the three-phase cellular inductive charging platform was proposed. A final three-phase cellular inductive charging platform system was constructed, according to the experimental result, the transmission efficiency can reach to 87.3%.
參考文獻
[1]J. Park, Y. Tak, Y. Kim, Y. Kim, and S. Nam, “Investigation of adaptive matching methods for near-field wireless power transfer,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1769-1773, May 2011.
[2]Z. Yan, Q. Yang, H. Chen, C. Zhang, and G. Xu, “Modeling and experimental analysis of helical resonator for wireless power transmission system,” in Proc. IEEE ICECE, 2010, pp. 3886-3889.
[3]R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON, 1997, vol. 2, pp. 792-797.
[4]A. Khaligh and Li Zhihao, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE Trans. Veh. Commun., vol. 59,no. 6, pp. 296-307, July 2010.
[5]S. S. Williamson and Z. Amjadi, “Prototype design and controller implementation for a battery-ultracapacitor hybrid electric vehicle energy storage system,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 332-340, Mar. 2012.
[6]G. A. Covic, N. A. Keeling, and J. T. Boys “A unity-power-factor IPT pickup for high-power applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 744-751, Feb. 2010.
[7]G. A. Covic, N. A. Keeling, and J. T. Boys “Unity power factor inductive power transfer pick-up for high power applications,” in Proc. IEEE IECON, 2008, pp. 1039-1044.
[8]G. A. Covic, C. -Y. Huang, and J. T. Boys “Single-phase unity power-factor inductive power transfer system,” in Proc. IEEE PESC, 2008, pp. 3701-3706.
[9]A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
[10]S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC, 2008, pp. 4320-4325.
[11]D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC, 2005, vol. 2, pp. 1133-1136.
[12]J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC, 1995, pp. 245-251.
[13]I. J. Yoon and H. Ling, “Realizing efficient wireless power transfer using small folded cylindrical helix dipoles,” IEEE Antennas Wireless Propag.. Lett., vol. 9, pp. 846-849, 2010.
[14]“SAE electric vehicle inductive charge coupling recommended practice,” SAE J-1773, Society of Automotive Engineers, Draft Document, 1995-01.
[15]Jesse Schneider. (2012, Jan.). SAE J2954 overview and path forward. U.S.A. [Online]. Available: http://www.sae.org/smartgrid/sae-j2954-stat us_1-2012.pdf.
[16]Domenick Yoney. (2009, Apr.). What are the benefits of charging stations vs. battery swaps vs. home charging? [Online]. Available: http://green.autoblog.com/2009/04/09/greenlings-benefits-of-charging- stations-vs-battery-swaps-vs-ho/.
[17]Timon Singh. (2011, Feb.). World's first wireless electric car charger launched in UK [Online]. Available: http://inhabitat.com/worlds-first -wireless-electric-car-charger-launched-in-uk/.
[18]G. A. Covic, O. H. Stielau, and C. S. Wang, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[19]H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air-gap coupler for inductive charger [for electric vehicles],” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, Sep. 1999.
[20]F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4203-4205, Apr. 1997.
[21]A. Llombart, J. L. Villa, J. Sallan, and J. F. Sanz Osorio, “High-misalignment tolerant compensation topology for ICPT systems,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945-951, Feb. 2012.
[22]R. Itoh, H. Matsumoto, Y. Neba, and K. Ishizaka, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[23]D. D. Stancil, B. L. Cannon, J. F. Hoburg, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, July 2009.
[24]J. W. Lee and T. P. Duong, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.
[25]Y. H. Chong, X. C. Wei, E. P. Li, and Y. L. Guan, “Simulation and experimental comparison of different coupling mechanisms for the wireless electricity transfer,” J. Electromagn. Waves Appl., vol. 23, no. 7, pp. 925-934, 2009.
[26]N. A. Mortensen, L. Peng, J. Y. Wang, L. X. Ran, and O. Breinbjerg, “Performance analysis and experimental verification of mid-range wireless energy transfer through non-resonant magnetic coupling,” J. Electromagn. Waves Appl., vol. 25, no. 5-6, pp. 845-855, 2011.
[27]J. H. Wang, J. G. Li, S. L. Ho, W. N. Fu, Z. G. Zhao, W. L. Yan, and M. G. Sun, “Analytical study and corresponding experiments for a new resonant magnetic charger with circular spiral coils,” J. Appl. Physics, vol. 111, no. 7, pp. 07E704 - 07E704-3, 2012.
[28]G. A. Covic, M. Budhia, J. T. Boys, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, Jan. 2013.
[29]W. S. Lee, H. L. Lee, K. S. Oh, and J. W. Yu, “Uniform magnetic field distribution of a spatially structured resonant coil for wireless power transfer,” J. Appl. Physics Lett., vol. 100, no. 21, pp. 214105 -214105-5, 2012.
[30]X. Zhang, S. L. Ho, and W. N. Fu, “Quantitative analysis of a wireless power transfer cell with planar spiral structures,” IEEE Trans. Magn., vol. 47, no. 10, pp. 3200-3203, Oct. 2012.
[31]M. Sun, F. Zhang, S. A. Hackworth, W. Fu, C. Li, and Z. Mao, “Relay effect of wireless power transfer using strongly coupled magnetic resonances,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1478-1481, May 2011.
[32]J. Moshfegh, M. Shahabadi, and J. Rashed-Mohassel, “Conditions of maximum efficiency for wireless power transfer between two helical wires,” IET Microw. Antennas Propag., vol. 5, no. 5, pp. 545-550, 2011.
[33]C. L. Lin, C. J. Chen, T. H. Chu, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 7, pp. 536-540, July 2010.
[34]S. Y. R. Hui, W.X. Zhong, and C. K. Lee, “Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1905-1916, 2012.
[35]S. Y. R. Hui and X. Liu, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, Nov. 2007.
[36]S. Y. R. Hui and X. Liu, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
[37]M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, Jan. 2013.
[38]M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[39]M. Soljacic, P. Fisher, A. Kurs, A. Karalis, R. Moffatt, and J. D. Joannopoulos, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83-85, 2007.
[40]M. Soljacic, M. P. Kesler, A. B. Kurs, A. Karalis, K. L. Hall, A. J. Campanella, and K. Kulikowski, “Secure wireless energy transfer for vehicle applications,” U.S. Patent 2012/0 112 531 A1, May 10, 2012.
[41]M. Soljacic, M. P. Kesler, A. B. Kurs, A. Karalis, K. L. Hall, and A. J. Campanella, “Wireless energy transfer for vehicle applications,” U.S. Patent 2012/0 112 538 A1, May 10, 2012.
[42]J. R. Smith, A. P. Sample, and D. A. Meyer, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, 2011.
[43]J. R. Smith, B. H. Waters, A. P. Sample, and P. Bonde, “Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system,” Proc. IEEE, vol. 100, no. 1, pp. 138-149, Jan. 2012.
[44]Y. Hori and T. Imura, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and neumann formula,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746-4752, Oct. 2011.
[45]Y. Hori, T. Imura, H. Okabe, and T. Uchida, “Study on open and short end helical antennas with capacitor in series of wireless power transfer using magnetic resonant couplings,” in Proc. IEEE IECON, 2009, pp. 3848-3853.
[46]清宮信志. (2012, Sep.). 三井ホーム、EVの非接触充電設備を備えた次世代住宅「MIDIEAS」. Japan. [Online]. Available: http://car.watch.impress.co.jp/docs/news/20120911_558803.html.
[47]Efe. Zaragoza. (2012, Dec.). El CIRCE crea un sistema de carga de vehículos eléctricos sin cables. Zaragoza. [Online]. Available: http://www.heraldo.es/noticias/aragon/zaragoza_provincia/zaragoza/2012/12/03/un_nuevo_sistema_carga_vehiculos_electricos_sin_cables_minutos_213967_301.html.
[48]Frank Sherosky. (2012, May). Delphi go wireless EV charger in full regalia at SAE world congress. U.S.A. [Online]. Available: http://www.torquenews.com/119/delphi-go-wireless-ev-charger-full-regalia-sae-world-congress.
[49]Showa Aircraft Industry Corp. (2012). IPS and EV. Japan. [Online]. Available: http://www.showa-aircraft.co.jp/en/products/IPS.html.
[50]C. T. Rim, J. Huh, S. W. Lee, W. Y. Lee, and G. H. Cho, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666-3679, Dec. 2011.
[51]J. H. Bae. (2012, Oct.). Korea’s home-grown EV wireless charging system to get off the ground. Korea. [Online]. Available: http://itersnews.com/?p=15020.
[52]H. H. Wu, A. Gilchrist, K. D. Sealy, and D. Bronson, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 585-595, Aug. 2012.
[53]H. H. Wu, A. Gilchrist, K. D. Sealy, and D. Bronson, “A 90 percent efficient 5kW inductive charger for EVs,” in Proc. IEEE ECCE, 2012, pp. 275-282.
[54]G. A. Covic and J. T. Boys, “Magnetic design of a three-phase inductive power transfer system for roadway powered electric vehicles,” in Proc. IEEE Veh. Power and Propulsion Conf., 2010, pp. 1-6.
[55]C. L. W. Sonntag, E. A. Lomonova, J. L. Duarte, and A. J. A. Vandenput, “Specialized receiver for three-phase contactless energy transfer desktop applications,” in Proc. European Conf. Power Electron. and Appl., 2007, pp. 1-11.
[56]H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Model for three-phase contactless power transfer system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2676-2687, Sep. 2011.
[57]D. J. Thrimawithana and U. K. Madawala, “A three-phase bi-directional IPT system for contactless charging of electric vehicles,” in Proc. IEEE Int. Conf. Ind. Technol., 2010, pp. 1957-1962.
[58]D. J. Thrimawithana, A. Francis, M. Neath, and U. K. Madawala, “Magnetic modeling of a high-power three phase bi-directional IPT system,” in Proc. IEEE IECON, 2011, pp. 1414-1919.
[59]王志方,磷酸鋰鐵電池之產業概況,2008年11月。
[60]許家興,電動車電池類型與電池基礎介紹,2009年10月。
[61]李嘉猷、沈紘宇、周瑋潔,“Contactless inductive power transmission track system with selective segmented excitation control for automated guided vehicles,” 第十一屆台灣電力電子研討會論文集,2012年,TPECE-215。
[62]李昆蔚,電動載具用編織型非接觸式感應充電平台之研製,國立成功大學電機工程學系碩士論文,2011年。
[63]賴景明,應用四線圈式多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2012年。
[64]劉杰諠,電動載具充電用非接觸式編織型感應饋電系統之研製,國立成功大學電機工程學系碩士論文,2012年。
[65]李嘉猷、趙善任、沈紘宇,“具新型三相感應耦合結構之電動載具用非接觸式感應充電平台,” 中華民國第三十三屆電力工程研討會論文集,2012年,1663-1669頁。