簡易檢索 / 詳目顯示

研究生: 紀景發
Chi, Chin-Fa
論文名稱: 以混合碳材為PtRu/C觸媒擔體用於改良直接甲醇燃料電池中陽極觸媒層之效能
Improvement on the Performance of the Anode Catalyst Layer in DMFC by using mixtures of Carbon Materials as support for Pt-Ru/C
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 128
中文關鍵詞: Pt-Ru/C碳奈米管直接甲醇燃料電池甲醇氧化
外文關鍵詞: methanol oxidation, Pt-Ru/C, Carbon nanotubes, Direct methanol fuel cell
相關次數: 點閱:108下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究以改良直接甲醇燃料電池陽極觸媒為主要的研究課題。由於過去的研究成果顯示:在相同的金屬含量的條件下,採用多次含浸法所製得的觸媒電極的活性,明顯地比採用傳統一次含浸法所製成者好,而且若同時將碳奈米管(CNT)與碳黑(XC-72)以各一半的比例混合,含浸鉑與釕所製得的觸媒,其性能更佳。所以在此後續研究中,我們以改變碳材為主要的研究方向,除碳黑外,也使用中孔洞碳材(MC),並研究不同碳材之孔洞型態與添加碳奈米管的效應。
    結果顯示:以碳黑和中孔洞碳材為擔体,在相同的金屬含量的條件下,使用不同還原劑、前驅物之含浸濃度製備含Pt 10 wt % 之 Pt-Ru/C觸媒時,觸媒上Pt-Ru金屬微粒之粒徑、分散度皆會不同,進而影響到觸媒孔徑分佈、表面積(分佈)。觸媒孔徑分佈、表面積(分佈)對於觸媒催化甲醇氧化之活性有待進一步研究。多次含浸時由於金屬前驅物濃度較小,使觸媒上Pt-Ru金屬微粒之粒徑明顯下降,分散度與對甲醇氧化之電催化活性也有顯著的提升。採用多次臨濕含浸法製備電極觸媒時,含浸次數較多者之活性較佳。直接以商用碳黑、中孔洞碳材為擔体,經三次含浸製得10 wt % 之Pt-Ru/XC-72、Pt-Ru/MC觸媒,於相同條件下對甲醇之電催化活性可達E-TEK 20 wt % Pt-Ru/C商用觸媒的 95%、90%。
    在含Pt 10 wt % 的 Pt-Ru/XC與Pt-Ru/MC中添加碳奈米管或含Pt 10 wt %的 Pt-Ru/CNT,可提高整體觸媒的活性。最佳添加量,前者為 5 wt %,後者為20 wt %,兩種觸媒的活性皆接近於E-TEK 20 wt % Pt-Ru/C商用觸媒。而20 wt % 之Pt-Ru/XC-72、Pt-Ru/MC各添加5 wt %與20 wt %之 CNT(含浸20 wt % Pt-Ru)混合製成觸媒之效能則較E-TEK提升20 % 與10% 。
    在不同碳材中添加碳奈米管或已含浸Pt與Ru之碳奈米管時,除需考慮導電度、直徑、長度及捲曲程度外,亦需考量碳材本身之粒徑、孔徑分佈與表面積分佈。在後續研究中,將針對這些因素予以實驗探討。本研究成果也可應用到以氫氫為燃料之質子交換膜燃料電池 (PEMFC)。

    Abstract

    The main object of this study is to improve the performance of the anode catalyst in direct methanol fuel cell. The previous investigation reveals that with the same metal loading on carbon black, the performance of of the catalyst prepared by multiple impregnation for electrocatalytic oxidation of methanol is obviously better than that by single impregnation, and when the mixture of carbon black and carbon nanotube with a ratio of 1:1 was used as the support for Pt-Ru/C, the catalyst has the best electrocatalytic activity. In this succeeding work, four kinds of carbon materials were used as the supports for Pt-Ru/C, including carbon black(XC-72), mesoporous carbon(MC) and two different types of carbon nanotubes(CNT), the effect of pore structures of these carbon materials and the addition of CNT to XC-72 and MC on the
    performance of Pt-Ru/C catalysts were investigated.

    Experimental results reveal that when preparing 10wt% Pt-Ru/C with carbon black and mesoporous carbon as the supports, using the different reducting agents and concentrations of precursor would result in different Pt-Ru particles sizes and dispersion on carbon materials, in turn, would affect the surface area and pore size distribution of catalysts. However, their effects on the electrochemical performance should be further investigated. When the catalyst was prepared by multiple impregnation, because of the low precursor concentration, the size of Pt-Ru particles would be smaller and hence the dispersion of Pt-Ru particles and electrochemical performance would be better. Pt-Ru/XC and Pt-Ru/MC catalysts with 10 wt % Pt prepared by carbon black and mesoporous carbon as the support and by three-time impregnation have higher electrocataltytic activity for methanol oxidation. Their activities are about 95% and 90% of that of the commercial catalyst E-TEK
    (with 20 wt % Pt), respectively.
    Adding CNT or CNT(10), [CNT(x) represents CNT containing X wt % of Pt] to Pt-Ru/XC and Pt-Ru/MC would also improve the electrochemical performance. The optimum adding amounts of CNT(10) are 5 wt % for the former and 20 wt % for the latter. Their electrochemical performances are almost the same as that of E-TEK. The addition of 5 wt % and 20 wt % CNT(20) to Pt-Ru/XC and Pt-Ru/MC catalysts (both containing 20 wt % ) would give activities 20 % and 10 % higher than that of E-TEK Pt-Ru/C
    catalyst containing 20 wt % Pt, respectively.

    When CNT or CNT with loaded Pt-Ru will be added to Pt-Ru/carbon catalyst, electrical conductivity, diameter, length and entanglement of carbon nanotubes should be considered first. Besides, the particle size, surface area and pore size distribution of the carbon support are also important factors. In further studies, we will focus on those factors to elucidate how they affect the electrochemical performance. Note that the results obtained in the present study can be also applied to the proton exchange membrane fuel cell (PEMFC) with hydrogen as the feed.

    目錄 中文摘要 I 英文摘要 Ⅲ 目錄 Ⅵ 表目錄 Ⅹ 圖目錄 ⅩⅥ 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 基本原理與文獻回顧 8 2.1直接甲醇燃料電池工作原理與構造 8 2.1.1流場版 9 2.1.2氣體擴散層 9 2.1.3觸媒層 10 2.1.4質子交換膜 10 2.2 陽極觸媒材料 13 2.2.1 陽極觸媒發展方向 15 2.3 陰極觸媒材料 18 2.4 碳材料簡介 19 2.4.1 碳奈米管 23 2.4.2 奈米碳纖維 24 2.5 孔洞材料原理介紹 26 2.5.1 中孔洞碳材 27 2.5.2 中孔材料之孔洞及比表面積分析 29 2.6 觸媒製備方法 32 2.6.1 觸媒製備方式 32 2.6.2 金屬前驅物、還原劑對製備方式的影響 34 2.7電池極化現象與極化曲線 36 2.7.1 活性過電位 36 2.7.2 質傳過電位 37 2.7.3 歐姆過電位 37 2.7.4 極化曲線 37 2.8 線性掃描伏安法 39 第三章 實驗部分 41 3.1 藥品與材料 41 3.2 儀器設備 42 3.3 實驗方法 43 3.3.1 碳材之前處理 45 3.3.2 Pt50-Ru50/C 觸媒製步驟 45 3.3.3 電極觸媒層之製備 46 3.4 觸媒特性分析 47 3.4.1. 熱重損失分析(TGA) 47 3.4.2 BET表面積分析 47 3.4.3 X光繞射(XRD)分析 48 3.4.4 掃瞄式電子顯微鏡(SEM) 48 3.4.5 穿透式電子顯微鏡(TEM)分析 49 3.4.6 TEM 粒徑分佈之計算 49 3.5 電化學分析 50 第四章 結果與討論 53 4.1 觸媒特性分析 53 4.1.1 等溫物理吸附分析 53 4.1.2 熱重損失分析(TGA) 65 4.1.3 XRD繞射分析 69 4.1.4 SEM、EDS分析 74 4.1.5 穿透式電子顯微鏡TEM 分析 80 4.2 觸媒電極之電化學活性測試 97 4.2.1電化學活性測試背景實驗 97 4.2.2掃瞄速率對活性測試之影響 97 4.2.3不同還原劑對觸媒電催化活性之影響 100 4.2.4電極觸媒之電化學活性測試 102 第五章 結論 115 5.1 結論 115 5.2 未來研究方向與實驗建議 116 參考文獻 118

    參考文獻
    [1] 鄭耀宗, 徐耀昇, 燃料電池技術進展的現況分析, 節約能源論文
    發表會論文專輯, p.409 (1999).
    [2] 許寧逸、顏溪成,”由碳能朝向氫能的燃料電池”,科學發展, 367
    期, 6 (2003)
    [3] T. Frelink, W. Visscher, J.A.R. van Veen, “Particles size effect of
    carbon-supported platinum catalysts for the electrooxidation of
    methanol”, J. Electroanal. Chem.,382, 65 (1995)
    [4] N. Nakagawa, Y. Xiu, “Performance of a direct methanol fuel cell operated
    at atmospheric pressure” , J. Power Sources., 118, 248 (2003)
    [5] Z. Ogumi, T. Kuroe, Z.I. Takehara, J. Electrochem. Soc., 132, 2601 (1985)
    [6] N.M. Markovic, P. N. Ross Jr. “Surface science studies of model fuel
    cell electrocatalysts”, Surface Science Reports, 45, 117 (2002)
    [7] T. Iwasita., “Electrocatalysis of methanol oxidation”, Electrochimica
    Acta., 47, 3663 (2002)
    [8] J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on
    Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different
    Temperatures for DMFCs”, J. Electrochem. Soc., 150, A973 (2003)
    [9] J. Luo, M. M. Maye, N. N. Kariuki, L. Wang, P. Njoki,Y. Lin, M. Schadt, H.
    R. Naslund, C.-J. Zhong, “ Electrocatalytic oxidation of methanol: carbon-
    supported gold–platinum nanoparticle catalysts prepared by two-phase
    protocol ”, Catalysis Today., 99, 291 (2005)
    [10] M. Gotz, H. Wendt, “Binary and ternary anode catalyst formulations
    including the elements W,Sn and Mo for PEMGCs operated on methanol or
    reformate gas”, Electrochemica Acta, 43 , 3637 (1998)
    [11] E. M. Crabb, R. Marshall, D. Thompsettb, ” Carbon Monoxide Electro-
    oxidation Properties of Carbon-Supported PtSn Catalysts Prepared Using
    Surface Organometallic Chemistry”, J. Electrochem. Soc., 147, 4440 (2000)
    [12] P. Gouérec, M. C. Denis, D. Guay, J. P. Dodelet, R. Schulzb, “High
    Energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel Cells and
    Their Tolerance to CO”, J. Electrochem. Soc., 147, 3989 (2000)
    [13] C. Roth, M. Goetz , H. Fuess , “Synthesis and characterization of carbon-
    supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods”,
    J. Appl. Electrochemistry., 31 , 793
    [14] Z. Hou, B. Yi, H. Yu, Z. Lin, H. Zhang, “CO tolerance electrocatalyst of
    PtRu-HxMeO3/C (Me = W, Mo)made by composite support method”, J. Power
    Sources. 123, 116 (2003)
    [15] Hogarth, M. P. Ralph, T. R., Platinum Met. Rev., 46, 146 (2002)
    [16] M. Watanabe, M. Uchida, S. Motoo, “Preparation of Highly Dispersed Pt +
    Ru Clusters and the Activity for the Electro-oxidation of Methanol”, J.
    Electroanal. Chem., 29, 395 (1987)
    [17] Y. Takasu, W. Sugimoto, and Y. Murakami, “Electrocatalytic Oxidation of
    Methanol and Related Chemical Species on Ultrafine Pt and PtRu Particles
    Supported on Carbon”, Catalysis Surveys, 7, 21 (2003)
    [18] Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki,b M. Oguri,b T. Asaki,W.
    Sugimotoa, “Effect of Structure of Carbon-Supported PtRu
    Electrocatalysts on the Electrochemical Oxidation of Methanol”, J. The
    Electrochem. Soc., 147, 4421 (2000)
    [19] Bogdan Gurau, Rameshkrishnan Viswanathan, Renxuan Liu, Todd J. Lafrenz,
    Kevin L. Ley, and E. S. Smotkin, “Structural and Electrochemical
    Characterization of Binary, Ternary, and Quaternary Platinum Alloy
    Catalysts for Methanol Electro-oxidation “, J. Phys. Chem. B., 102, 9997
    (1998)
    [20] Kyung-Won Park,a Jong-Ho Choi, Seol-Ah Lee, Chanho Pak, Hyuck Chang,and
    Yung-Eun Sung, “PtRuRhNi nanoparticle electrocatalyst for methanol
    electrooxidation in direct methanol
    fuel cell”, J. Catalysis., 224, 236 (2004)
    [21] J. Larminie et al., Fuel Cell Systems Explained 2nd,Wiley (2003)
    [22] X. Wang, I.M. Hsing, “Surfactant stabilized Pt and Pt alloy
    electrocatalyst for polymer electrolyte fuel cells”, Electrochimica
    Acta., 47, 2981 (2002)
    [23] J. Prabhuram, X. Wang, C. L. Hui, and I.M. Hsing, “Synthesis and
    Characterization of Surfactant-Stabilized Pt/C Nanocatalysts for Fuel
    Cell Applications”, J. Phys. Chem. B., 107, 11057 (2003)
    [24] J.W. Guo, T.S. Zhao, J. Prabhuram, C.W. Wong, “Preparation and the
    physical/electrochemical properties of a Pt/C nanocatalyst stabilized by
    citric acid for polymer electrolyte fuel cells”,Electrochimica Acta.,
    50, 1973 (2005)
    [25] B. Rajesh, K. Ravindranathan Thampi, J.-M. Bonard, A. J. McEvoy, N.
    Xanthopoulos, H. J. Mathieu, B. Viswanathan, “Pt particles supported on
    conducting polymeric nanocones as electro-catalysts for methanol
    oxidation”, J. Power Sources., 133 ,155 (2004)
    [26] V. Baglio, A.S. Arico, A. Di Blasi, P. L. Antonucci, F. Nannetti, V.
    Tricoli and V. Antonucci, “Zeolite-based composite membranes for high
    temperature direct methanol fuel cells”, J. Appl.
    Electrochemistry., 35, 207 (2005)
    [27] Z. Chen , X. Qiu, B. Lu, S. Zhang,W. Zhu, L. Chen,”Synthesis of hydrous
    ruthenium oxide supported platinum catalysts for direct methanol fuel
    cells”, Electrochem. Commun., 7, 593 (2005)
    [28] H. Yang, N. A. Vante, J.M. Léger, and C. Lamy, “Tailoring, Structure,
    and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts
    for Oxygen Reduction in Pure and Methanol-Containing Electrolytes”, J.
    Phys. Chem. B., 108, 1938 (2004)
    [29] J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong, “The effect of methanol
    concentration on the performance of a passive DMFC”,Electrochem.
    Commun., 7, 288 (2005)
    [30] J. Hayashi , A. Kazehaya , K. Muroyama , A.P. Watkinson, “Preparation of
    activated carbon from lignin by chemical activation”, Carbon, 38, 1873
    (2000)
    [31] M.A. Lillo-Rodenas, D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-
    Solano, “Preparation of activated carbons from Spanish anthracite II.
    Activation by NaOH”, Carbon, 39, 751 (2001)
    [32] Savage,G.Carbon-Carbon Composites,1st ed.; Chapman & Hall:New
    York,1993.
    [33] Wakihara,M. Yamamoto O.Lithium Ion Batteries:Fundamentals and
    Performance; Kodansha: Tokyo,1998.
    [34] Griffiths J.A. Marsh H.Carbon, 18, 59 (1980)
    [35] K.Tatsumi, N. Iwashita, H.Sakaebe, H. Shioyama, S. Higuchi,“The
    Influence of the Graphitic Structure on the Electrochemical
    Characteristics for the Anode of Secondary Lithium Batteries “,
    J.Electrochem.Soc.,142, 716 (1995)
    [36] S. Han, Y. Yun, K.W. Park, Y.E. Sung, T. Hyeon, ”Simple Solid-Phase
    Synthesis of Hollow Graphitic Nanoparticles and their Application to
    Direct Methanol Fuel Cell Electrodes”, Adv. Mater., 15, 1922 (2003)
    [37] T. Hyeon, S. Han, Y.E. Sung, K.W. Park, Y.W. Kim, “High-Performance
    Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon
    Nanocoils”, Ange. Chem. Int. Edit., 42, 4352 (2000)
    [38] C. Liu, H.T.Cong, F. Li , “Semi-continuous synthesis of single-walled
    Carbon nanotubes by a hydrogen arc discharge method”, Carbon, 37, 1865
    (1999)
    [39] C. Liu, Hui-Ming Cheng, H. T. Cong, F. Li, G. Su, B. L. Zhou, and M. S.,
    “Dresselhaus Synthesis of Macroscopically Long Ropes of Well-Aligned
    Single-Walled Carbon Nanotubes”, Adv. Mater., 12, 1190 (2000)
    [40] M. Endo , C. Kim, K. Nishimura, T. Fujino, K. Miyashita, ”Recent
    development of carbon materials for Li ion batteries” , Carbon, 38,
    183 (2000)
    [41] M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, ”Alternative
    supports for the preparation of catalysts for low-temperature fuel cells:
    the use of carbon nanotubes”, J. Power Sources., 142, 169 (2005)
    [42] Lijie Ci , Yanhui Li, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu ,
    “Preparation of carbon nanofibers by the floating catalyst method”,
    Carbon, 38, 1933 (2000)
    [43] L. P. Biro’, C.A. Bernardo, G. G. Tibbetts and Ph. Lambin, Carbon
    filaments and nanotubes: common origins, differing applications, Kluwer
    academic publishers, Dordrecht/Boston/London, p51 (2001)
    [44] C.L. Lee, C.C. Wan, Y.Y. Wang, “Synthesis of Metal Nanoparticles via
    Self-Regulated Reduction by an Alcohol Surfactant”, Adv. Funct.
    Mater., 11, 344 (2001)
    [45] C.L. Lee, Y.C. Ju, P.T. Chou, Y.C. Huang, L.C. Kuo, J.C. Oung,
    “Preparation of Pt nanoparticles on carbon nanotubes and graphite
    nanofibers via self-regulated reduction of surfactants and their
    application as electrochemical catalyst”, Electrochem. Commun. 7,
    453 (2005)
    [46] Y. Ying, C. P. Mehnert, M. S. Wong, “ Synthesis and applications of
    supramolecular-templated mesoporous materials”, Angew. Chem.
    Int. Ed., 38, 56 (1999)
    [47] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,
    “Ordered mesoporous molecular sieves synthesized by a liquid-crystal
    template mechanism” Nature, 359, 710 (1992)
    [48] Micropor. Mesopor. Mater., 44, 619 (2001)
    [49] F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, G. D. Stucky, “Doped
    Mesoporous Silica Fibers: A New Laser Material”,
    Adv.Mater., 11, 632 (1999)
    [50] A. G. J. de. Soler-Illia, C. Sanchez, B. dicte Lebeau, and J.Patarin,
    “Chemical strategies to design textured materials: from microporous and
    mesoporous oxides to nanonetworks and hierarchical
    structures”, Chem. Rev., 102, 4093 (2002).
    [51] H. C. Foley, J. Microporous Mater., 4, 407 (1995).
    [52] C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel
    Dekker, New York (1988)
    [53] Takashi Kyotani,T. Kyotani, “Control of pore structure in carbon” ,
    Carbon, 38, 269 (2000)
    [54] J. H. Knox, B. Kaur, G. R. Millward, “Structure and performance of
    porous graphitic carbon in liquid chromatography”, J. Chromatogr.,
    352, 3 (1986)
    [55] R. Ryoo, S. H. Joo, S. Jun, “ Synthesis of Highly Ordered Carbon
    Molecular Sieves via Template-Mediated StructuralTransformation”, J.
    Phys. Chem. B.,103 (1999)
    [56] R. Ryoo, S. H. Joo, M. Kruk,M. Jaroniec, “ Ordered Mesoporous
    Carbons”, Adv. Mater., 13, 677 (2001)
    [57] L.A. Solovyov , A.N. Shmakov , V.I. Zaikovskii , S.H. Joo , R. Ryoo,
    “Detailed structure of the hexagonally packed mesostructured
    carbon material CMK-3”,Carbon, 40, 2477 (2002)
    [58] 陳東文, 以”油-界面活性劑-水” 微乳液為模版製備囊泡狀中孔
    洞材料,成大化學系碩士論文, (2004)
    [59] S. H. Joo, S. J. Choi, I. Oh, J. Kwak,Z. Liu, O. Terasaki, R. Ryoo,
    “Ordered nanoporous arrays of carbon supporting high dispersions of
    platinum nanoparticles”, Nature, 412, 169 (2001)
    [60] J.H. Nam , Y. Y. Jang , Y. U. Kwon , J. D. Nam ,”Direct methanol fuel
    cell Pt–carbon catalysts by using SBA-15 nanoporous templates”,
    Electrochem. Commun., 6, 737 (2004)
    [61] P. Kim, H. Kim, J. B. Joo, W. Kim, I. K. Song, J. Yi, “Preparation and
    application of nanoporous carbon templated by silica particle for use as
    a catalyst support for direct methanol fuel cell”, J. Power
    Sources., 145, 139 (2005)
    [62] G.G. Park, T.H. Yang, Y. G. Yoon, W.Y. Lee, C.S. Kim, ”Pore size effect
    of the DMFC catalyst supported on porous materials”, Inter. J.
    Hydrogen Energy., 28, 645 (2003)
    [63] V. Rao, P.A. Simonov b, E.R. Savinova, G.V. Plaksin , S.V. Cherepanova,
    G.N. Kryukova , U. Stimming , “The influence of carbon support porosity
    on the activity of PtRu/Sibunit anode catalysts for methanol oxidation”,
    J. Power Sources., 145, 178 (2005)
    [64] S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, “On a theory
    of the van der waals adsorption of gases”, J. Am. Chem. Soc., 62, 1723
    (1940)
    [65] G. Ertl, H. Knozinger and J. Weitkamp, “Handbook of Heterogeneous
    Catalysis”, 3, 1508 (1997).

    [66] 廖聖茹, 黃依蘋, 林仁章, 黃瑞呈,“多孔性奈米材料比面積/孔隙度檢測技術”,
    工業材料, 190期, 115 (2002).
    [67] H. Kim, J.N. Park, W.H. Lee, ”Preparation of platinum-based electrode
    catalysts for low temperature fuel cell”, Catalysis Today., 87, 237
    (2003)
    [68] L. S. Sarma, T. D. Lin, Y.W. Tsai, J. M. Chen, B. J. Hwang, “Carbon-
    supported Pt-Ru catalysts prepared by the Nafion stabilized alcohol-
    reduction method for application in direct methanol fuel
    cells”, J. Power Sources., 139, 44 (2005)
    [69] W. H. Lizcano-Valbuena, V. A. Paganin, E. R. Gonzalez , “Methanol
    electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C
    catalysts”, Electrochimica Acta., 47, 3715 (2002)
    [70] W. H. Lizcano-Valbuena, V. A. Paganin , Carlos A.P. Leite ,F. Galembeck ,
    E. R. Gonzalez , ”Catalysts for DMFC: relation between morphology and
    electrochemical performance”, Electrochimica Acta., 48, 3869 (2003)
    [71] W. H. Lizcano-Valbuena, D. C. de Azevedo, E. R.Gonzalez, ”Supported
    metal nanoparticles as electrocatalysts for low-temperature fuel cells,
    Electrochimica Acta., 49, 1289 (2004)
    [72] T.C. Deivaraj and Jim Yang Lee, “Preparation of carbon-supported PtRu
    nanoparticles for direct methanol fuel cell applications – a comparative
    study”, J. Power Sources., 142, 43 (2005)
    [73] Z. Zhou, W. Zhou, S. Wang , G. Wang , L. Jiang ,H. Li , G. Sun, Q. Xin,
    “Preparation of highly active 40 wt% Pt/C cathode electrocatalysts for
    DMFC via different routes”, Catalysis Today., 93–95, 523 (2004)
    [74] C. Roth, N. Martz, H. Fuess,” Characterization of different Pt–Ru
    catalysts by X-ray diffraction and transmission electron
    microscopy”, Phys. Chem. Chem. Phys., 3, 315 (2001)
    [75] Y. Takasu , T. Kawaguchi, W. Sugimoto, Y. Murakami, “Effects of the
    surface area of carbon support on the characteristics of
    highly-dispersed Pt-Ru particles as catalysts for methanol oxidation”,
    Electrochimica Acta., 48, 3861 (2003)
    [76] M. Watanabe et al., J. Electroanal. Chem., 229, 395 (1987)
    [77] X. Zhang, K.Y. Chan , “Water-in-Oil Microemulsion Synthesis of Platinum-
    Ruthenium Nanoparticles, Their Characterization and Electrocatalytic
    Properties”,Chem. Mater., 15, 451 (2003)
    [78] Z. Liu, L. M. Gan, L. Hong, W. Chen, J. Y. Lee,“Carbon-supported Pt
    nanoparticles as catalysts for proton exchange membrane fuel
    cells”, J. Power Sources., 139, 73 (2005)
    [79] Z. He, J. Chen, D. Liu, H. Tang, W. Deng, Y. Kuang, “Deposition and
    electrocatalytic properties of platinum nanoparticals oncarbon nanotubes
    for methanol electrooxidation”, Mater.Chem. Phys., 85, 396 (2004)
    [80] Y. T. Kho, S. Srinivasan, “Mass Transport Phenomens in Proton Exchange
    Membrane Fuel Cells Using O2/He,O2/Ar and O2/N2 Mixture Ⅱ Theoretical
    Analysis”, J. Electrochem.Soc., 141, 2089 (1994)
    [81] T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for
    the Flooded-Agglomerate Model of Porous Gas-Diffusion Electrodes”, J.
    Electrohem. Soc., 136, 1594 (1989)
    [82] K. W. Park, B. K. Kwon, J. H. Choi, Y. M. Kim, Y. E. Sung, “New RuO2 and
    carbon-RuO2 composite diffusion layer for use in direct methanol fuel
    cells”, J. Power Sources., 439, 109 (2002)
    [83] T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, “Novel method
    for investigation of two-phase flow in liquid feed direct methanol fuel
    cells using an aqueous H2O2 solution” ,J. Power Sources, 125, 1 (2004)
    [84] J. Kim, S. M. Lee, S. Srinivasan, “Modeling of Proton Exchange Membrane
    Fuel Cell Performance with an Empirical Equation”, J. Electrochem. Soc.,
    142, 2670 (1995)
    [85] M. D. Bernardi, M. W. Verbrugge,” A Mathematical Model of the Solid-
    Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., 139,
    2477 (1992)
    [86] 李振彬,直接甲醇燃料電池中陽極觸媒層效能之改良, 國立成功大
    學化學工程學系碩士論文 (2005)
    [87] L. Dubau, F. Hahn, C. Coutanceau, J.-M. Le´ger, C. Lamy, “On the
    structure effects of bimetallic PtRu electrocatalysts towards methanol
    oxidation”, J. Electroanal. Chem., 554-555, 407 (2003)
    [88] P. Sivakumar, R. Ishak, V. Tricoli, “Novel Pt–Ru nanoparticles formed
    by vapour deposition as efficient electrocatalyst for methanol oxidation
    Part I. Preparation and physical characterization”,
    Electrochimica Acta., 50, 3312 (2005)

    下載圖示 校內:2007-07-28公開
    校外:2007-07-28公開
    QR CODE