| 研究生: |
紀景發 Chi, Chin-Fa |
|---|---|
| 論文名稱: |
以混合碳材為PtRu/C觸媒擔體用於改良直接甲醇燃料電池中陽極觸媒層之效能 Improvement on the Performance of the Anode Catalyst Layer in DMFC by using mixtures of Carbon Materials as support for Pt-Ru/C |
| 指導教授: |
翁鴻山
Weng, Hung-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | Pt-Ru/C 、碳奈米管 、直接甲醇燃料電池 、甲醇氧化 |
| 外文關鍵詞: | methanol oxidation, Pt-Ru/C, Carbon nanotubes, Direct methanol fuel cell |
| 相關次數: | 點閱:108 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究以改良直接甲醇燃料電池陽極觸媒為主要的研究課題。由於過去的研究成果顯示:在相同的金屬含量的條件下,採用多次含浸法所製得的觸媒電極的活性,明顯地比採用傳統一次含浸法所製成者好,而且若同時將碳奈米管(CNT)與碳黑(XC-72)以各一半的比例混合,含浸鉑與釕所製得的觸媒,其性能更佳。所以在此後續研究中,我們以改變碳材為主要的研究方向,除碳黑外,也使用中孔洞碳材(MC),並研究不同碳材之孔洞型態與添加碳奈米管的效應。
結果顯示:以碳黑和中孔洞碳材為擔体,在相同的金屬含量的條件下,使用不同還原劑、前驅物之含浸濃度製備含Pt 10 wt % 之 Pt-Ru/C觸媒時,觸媒上Pt-Ru金屬微粒之粒徑、分散度皆會不同,進而影響到觸媒孔徑分佈、表面積(分佈)。觸媒孔徑分佈、表面積(分佈)對於觸媒催化甲醇氧化之活性有待進一步研究。多次含浸時由於金屬前驅物濃度較小,使觸媒上Pt-Ru金屬微粒之粒徑明顯下降,分散度與對甲醇氧化之電催化活性也有顯著的提升。採用多次臨濕含浸法製備電極觸媒時,含浸次數較多者之活性較佳。直接以商用碳黑、中孔洞碳材為擔体,經三次含浸製得10 wt % 之Pt-Ru/XC-72、Pt-Ru/MC觸媒,於相同條件下對甲醇之電催化活性可達E-TEK 20 wt % Pt-Ru/C商用觸媒的 95%、90%。
在含Pt 10 wt % 的 Pt-Ru/XC與Pt-Ru/MC中添加碳奈米管或含Pt 10 wt %的 Pt-Ru/CNT,可提高整體觸媒的活性。最佳添加量,前者為 5 wt %,後者為20 wt %,兩種觸媒的活性皆接近於E-TEK 20 wt % Pt-Ru/C商用觸媒。而20 wt % 之Pt-Ru/XC-72、Pt-Ru/MC各添加5 wt %與20 wt %之 CNT(含浸20 wt % Pt-Ru)混合製成觸媒之效能則較E-TEK提升20 % 與10% 。
在不同碳材中添加碳奈米管或已含浸Pt與Ru之碳奈米管時,除需考慮導電度、直徑、長度及捲曲程度外,亦需考量碳材本身之粒徑、孔徑分佈與表面積分佈。在後續研究中,將針對這些因素予以實驗探討。本研究成果也可應用到以氫氫為燃料之質子交換膜燃料電池 (PEMFC)。
Abstract
The main object of this study is to improve the performance of the anode catalyst in direct methanol fuel cell. The previous investigation reveals that with the same metal loading on carbon black, the performance of of the catalyst prepared by multiple impregnation for electrocatalytic oxidation of methanol is obviously better than that by single impregnation, and when the mixture of carbon black and carbon nanotube with a ratio of 1:1 was used as the support for Pt-Ru/C, the catalyst has the best electrocatalytic activity. In this succeeding work, four kinds of carbon materials were used as the supports for Pt-Ru/C, including carbon black(XC-72), mesoporous carbon(MC) and two different types of carbon nanotubes(CNT), the effect of pore structures of these carbon materials and the addition of CNT to XC-72 and MC on the
performance of Pt-Ru/C catalysts were investigated.
Experimental results reveal that when preparing 10wt% Pt-Ru/C with carbon black and mesoporous carbon as the supports, using the different reducting agents and concentrations of precursor would result in different Pt-Ru particles sizes and dispersion on carbon materials, in turn, would affect the surface area and pore size distribution of catalysts. However, their effects on the electrochemical performance should be further investigated. When the catalyst was prepared by multiple impregnation, because of the low precursor concentration, the size of Pt-Ru particles would be smaller and hence the dispersion of Pt-Ru particles and electrochemical performance would be better. Pt-Ru/XC and Pt-Ru/MC catalysts with 10 wt % Pt prepared by carbon black and mesoporous carbon as the support and by three-time impregnation have higher electrocataltytic activity for methanol oxidation. Their activities are about 95% and 90% of that of the commercial catalyst E-TEK
(with 20 wt % Pt), respectively.
Adding CNT or CNT(10), [CNT(x) represents CNT containing X wt % of Pt] to Pt-Ru/XC and Pt-Ru/MC would also improve the electrochemical performance. The optimum adding amounts of CNT(10) are 5 wt % for the former and 20 wt % for the latter. Their electrochemical performances are almost the same as that of E-TEK. The addition of 5 wt % and 20 wt % CNT(20) to Pt-Ru/XC and Pt-Ru/MC catalysts (both containing 20 wt % ) would give activities 20 % and 10 % higher than that of E-TEK Pt-Ru/C
catalyst containing 20 wt % Pt, respectively.
When CNT or CNT with loaded Pt-Ru will be added to Pt-Ru/carbon catalyst, electrical conductivity, diameter, length and entanglement of carbon nanotubes should be considered first. Besides, the particle size, surface area and pore size distribution of the carbon support are also important factors. In further studies, we will focus on those factors to elucidate how they affect the electrochemical performance. Note that the results obtained in the present study can be also applied to the proton exchange membrane fuel cell (PEMFC) with hydrogen as the feed.
參考文獻
[1] 鄭耀宗, 徐耀昇, 燃料電池技術進展的現況分析, 節約能源論文
發表會論文專輯, p.409 (1999).
[2] 許寧逸、顏溪成,”由碳能朝向氫能的燃料電池”,科學發展, 367
期, 6 (2003)
[3] T. Frelink, W. Visscher, J.A.R. van Veen, “Particles size effect of
carbon-supported platinum catalysts for the electrooxidation of
methanol”, J. Electroanal. Chem.,382, 65 (1995)
[4] N. Nakagawa, Y. Xiu, “Performance of a direct methanol fuel cell operated
at atmospheric pressure” , J. Power Sources., 118, 248 (2003)
[5] Z. Ogumi, T. Kuroe, Z.I. Takehara, J. Electrochem. Soc., 132, 2601 (1985)
[6] N.M. Markovic, P. N. Ross Jr. “Surface science studies of model fuel
cell electrocatalysts”, Surface Science Reports, 45, 117 (2002)
[7] T. Iwasita., “Electrocatalysis of methanol oxidation”, Electrochimica
Acta., 47, 3663 (2002)
[8] J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on
Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different
Temperatures for DMFCs”, J. Electrochem. Soc., 150, A973 (2003)
[9] J. Luo, M. M. Maye, N. N. Kariuki, L. Wang, P. Njoki,Y. Lin, M. Schadt, H.
R. Naslund, C.-J. Zhong, “ Electrocatalytic oxidation of methanol: carbon-
supported gold–platinum nanoparticle catalysts prepared by two-phase
protocol ”, Catalysis Today., 99, 291 (2005)
[10] M. Gotz, H. Wendt, “Binary and ternary anode catalyst formulations
including the elements W,Sn and Mo for PEMGCs operated on methanol or
reformate gas”, Electrochemica Acta, 43 , 3637 (1998)
[11] E. M. Crabb, R. Marshall, D. Thompsettb, ” Carbon Monoxide Electro-
oxidation Properties of Carbon-Supported PtSn Catalysts Prepared Using
Surface Organometallic Chemistry”, J. Electrochem. Soc., 147, 4440 (2000)
[12] P. Gouérec, M. C. Denis, D. Guay, J. P. Dodelet, R. Schulzb, “High
Energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel Cells and
Their Tolerance to CO”, J. Electrochem. Soc., 147, 3989 (2000)
[13] C. Roth, M. Goetz , H. Fuess , “Synthesis and characterization of carbon-
supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods”,
J. Appl. Electrochemistry., 31 , 793
[14] Z. Hou, B. Yi, H. Yu, Z. Lin, H. Zhang, “CO tolerance electrocatalyst of
PtRu-HxMeO3/C (Me = W, Mo)made by composite support method”, J. Power
Sources. 123, 116 (2003)
[15] Hogarth, M. P. Ralph, T. R., Platinum Met. Rev., 46, 146 (2002)
[16] M. Watanabe, M. Uchida, S. Motoo, “Preparation of Highly Dispersed Pt +
Ru Clusters and the Activity for the Electro-oxidation of Methanol”, J.
Electroanal. Chem., 29, 395 (1987)
[17] Y. Takasu, W. Sugimoto, and Y. Murakami, “Electrocatalytic Oxidation of
Methanol and Related Chemical Species on Ultrafine Pt and PtRu Particles
Supported on Carbon”, Catalysis Surveys, 7, 21 (2003)
[18] Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki,b M. Oguri,b T. Asaki,W.
Sugimotoa, “Effect of Structure of Carbon-Supported PtRu
Electrocatalysts on the Electrochemical Oxidation of Methanol”, J. The
Electrochem. Soc., 147, 4421 (2000)
[19] Bogdan Gurau, Rameshkrishnan Viswanathan, Renxuan Liu, Todd J. Lafrenz,
Kevin L. Ley, and E. S. Smotkin, “Structural and Electrochemical
Characterization of Binary, Ternary, and Quaternary Platinum Alloy
Catalysts for Methanol Electro-oxidation “, J. Phys. Chem. B., 102, 9997
(1998)
[20] Kyung-Won Park,a Jong-Ho Choi, Seol-Ah Lee, Chanho Pak, Hyuck Chang,and
Yung-Eun Sung, “PtRuRhNi nanoparticle electrocatalyst for methanol
electrooxidation in direct methanol
fuel cell”, J. Catalysis., 224, 236 (2004)
[21] J. Larminie et al., Fuel Cell Systems Explained 2nd,Wiley (2003)
[22] X. Wang, I.M. Hsing, “Surfactant stabilized Pt and Pt alloy
electrocatalyst for polymer electrolyte fuel cells”, Electrochimica
Acta., 47, 2981 (2002)
[23] J. Prabhuram, X. Wang, C. L. Hui, and I.M. Hsing, “Synthesis and
Characterization of Surfactant-Stabilized Pt/C Nanocatalysts for Fuel
Cell Applications”, J. Phys. Chem. B., 107, 11057 (2003)
[24] J.W. Guo, T.S. Zhao, J. Prabhuram, C.W. Wong, “Preparation and the
physical/electrochemical properties of a Pt/C nanocatalyst stabilized by
citric acid for polymer electrolyte fuel cells”,Electrochimica Acta.,
50, 1973 (2005)
[25] B. Rajesh, K. Ravindranathan Thampi, J.-M. Bonard, A. J. McEvoy, N.
Xanthopoulos, H. J. Mathieu, B. Viswanathan, “Pt particles supported on
conducting polymeric nanocones as electro-catalysts for methanol
oxidation”, J. Power Sources., 133 ,155 (2004)
[26] V. Baglio, A.S. Arico, A. Di Blasi, P. L. Antonucci, F. Nannetti, V.
Tricoli and V. Antonucci, “Zeolite-based composite membranes for high
temperature direct methanol fuel cells”, J. Appl.
Electrochemistry., 35, 207 (2005)
[27] Z. Chen , X. Qiu, B. Lu, S. Zhang,W. Zhu, L. Chen,”Synthesis of hydrous
ruthenium oxide supported platinum catalysts for direct methanol fuel
cells”, Electrochem. Commun., 7, 593 (2005)
[28] H. Yang, N. A. Vante, J.M. Léger, and C. Lamy, “Tailoring, Structure,
and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts
for Oxygen Reduction in Pure and Methanol-Containing Electrolytes”, J.
Phys. Chem. B., 108, 1938 (2004)
[29] J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong, “The effect of methanol
concentration on the performance of a passive DMFC”,Electrochem.
Commun., 7, 288 (2005)
[30] J. Hayashi , A. Kazehaya , K. Muroyama , A.P. Watkinson, “Preparation of
activated carbon from lignin by chemical activation”, Carbon, 38, 1873
(2000)
[31] M.A. Lillo-Rodenas, D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-
Solano, “Preparation of activated carbons from Spanish anthracite II.
Activation by NaOH”, Carbon, 39, 751 (2001)
[32] Savage,G.Carbon-Carbon Composites,1st ed.; Chapman & Hall:New
York,1993.
[33] Wakihara,M. Yamamoto O.Lithium Ion Batteries:Fundamentals and
Performance; Kodansha: Tokyo,1998.
[34] Griffiths J.A. Marsh H.Carbon, 18, 59 (1980)
[35] K.Tatsumi, N. Iwashita, H.Sakaebe, H. Shioyama, S. Higuchi,“The
Influence of the Graphitic Structure on the Electrochemical
Characteristics for the Anode of Secondary Lithium Batteries “,
J.Electrochem.Soc.,142, 716 (1995)
[36] S. Han, Y. Yun, K.W. Park, Y.E. Sung, T. Hyeon, ”Simple Solid-Phase
Synthesis of Hollow Graphitic Nanoparticles and their Application to
Direct Methanol Fuel Cell Electrodes”, Adv. Mater., 15, 1922 (2003)
[37] T. Hyeon, S. Han, Y.E. Sung, K.W. Park, Y.W. Kim, “High-Performance
Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon
Nanocoils”, Ange. Chem. Int. Edit., 42, 4352 (2000)
[38] C. Liu, H.T.Cong, F. Li , “Semi-continuous synthesis of single-walled
Carbon nanotubes by a hydrogen arc discharge method”, Carbon, 37, 1865
(1999)
[39] C. Liu, Hui-Ming Cheng, H. T. Cong, F. Li, G. Su, B. L. Zhou, and M. S.,
“Dresselhaus Synthesis of Macroscopically Long Ropes of Well-Aligned
Single-Walled Carbon Nanotubes”, Adv. Mater., 12, 1190 (2000)
[40] M. Endo , C. Kim, K. Nishimura, T. Fujino, K. Miyashita, ”Recent
development of carbon materials for Li ion batteries” , Carbon, 38,
183 (2000)
[41] M. Carmo, V.A. Paganin, J.M. Rosolen, E.R. Gonzalez, ”Alternative
supports for the preparation of catalysts for low-temperature fuel cells:
the use of carbon nanotubes”, J. Power Sources., 142, 169 (2005)
[42] Lijie Ci , Yanhui Li, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu ,
“Preparation of carbon nanofibers by the floating catalyst method”,
Carbon, 38, 1933 (2000)
[43] L. P. Biro’, C.A. Bernardo, G. G. Tibbetts and Ph. Lambin, Carbon
filaments and nanotubes: common origins, differing applications, Kluwer
academic publishers, Dordrecht/Boston/London, p51 (2001)
[44] C.L. Lee, C.C. Wan, Y.Y. Wang, “Synthesis of Metal Nanoparticles via
Self-Regulated Reduction by an Alcohol Surfactant”, Adv. Funct.
Mater., 11, 344 (2001)
[45] C.L. Lee, Y.C. Ju, P.T. Chou, Y.C. Huang, L.C. Kuo, J.C. Oung,
“Preparation of Pt nanoparticles on carbon nanotubes and graphite
nanofibers via self-regulated reduction of surfactants and their
application as electrochemical catalyst”, Electrochem. Commun. 7,
453 (2005)
[46] Y. Ying, C. P. Mehnert, M. S. Wong, “ Synthesis and applications of
supramolecular-templated mesoporous materials”, Angew. Chem.
Int. Ed., 38, 56 (1999)
[47] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,
“Ordered mesoporous molecular sieves synthesized by a liquid-crystal
template mechanism” Nature, 359, 710 (1992)
[48] Micropor. Mesopor. Mater., 44, 619 (2001)
[49] F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, G. D. Stucky, “Doped
Mesoporous Silica Fibers: A New Laser Material”,
Adv.Mater., 11, 632 (1999)
[50] A. G. J. de. Soler-Illia, C. Sanchez, B. dicte Lebeau, and J.Patarin,
“Chemical strategies to design textured materials: from microporous and
mesoporous oxides to nanonetworks and hierarchical
structures”, Chem. Rev., 102, 4093 (2002).
[51] H. C. Foley, J. Microporous Mater., 4, 407 (1995).
[52] C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel
Dekker, New York (1988)
[53] Takashi Kyotani,T. Kyotani, “Control of pore structure in carbon” ,
Carbon, 38, 269 (2000)
[54] J. H. Knox, B. Kaur, G. R. Millward, “Structure and performance of
porous graphitic carbon in liquid chromatography”, J. Chromatogr.,
352, 3 (1986)
[55] R. Ryoo, S. H. Joo, S. Jun, “ Synthesis of Highly Ordered Carbon
Molecular Sieves via Template-Mediated StructuralTransformation”, J.
Phys. Chem. B.,103 (1999)
[56] R. Ryoo, S. H. Joo, M. Kruk,M. Jaroniec, “ Ordered Mesoporous
Carbons”, Adv. Mater., 13, 677 (2001)
[57] L.A. Solovyov , A.N. Shmakov , V.I. Zaikovskii , S.H. Joo , R. Ryoo,
“Detailed structure of the hexagonally packed mesostructured
carbon material CMK-3”,Carbon, 40, 2477 (2002)
[58] 陳東文, 以”油-界面活性劑-水” 微乳液為模版製備囊泡狀中孔
洞材料,成大化學系碩士論文, (2004)
[59] S. H. Joo, S. J. Choi, I. Oh, J. Kwak,Z. Liu, O. Terasaki, R. Ryoo,
“Ordered nanoporous arrays of carbon supporting high dispersions of
platinum nanoparticles”, Nature, 412, 169 (2001)
[60] J.H. Nam , Y. Y. Jang , Y. U. Kwon , J. D. Nam ,”Direct methanol fuel
cell Pt–carbon catalysts by using SBA-15 nanoporous templates”,
Electrochem. Commun., 6, 737 (2004)
[61] P. Kim, H. Kim, J. B. Joo, W. Kim, I. K. Song, J. Yi, “Preparation and
application of nanoporous carbon templated by silica particle for use as
a catalyst support for direct methanol fuel cell”, J. Power
Sources., 145, 139 (2005)
[62] G.G. Park, T.H. Yang, Y. G. Yoon, W.Y. Lee, C.S. Kim, ”Pore size effect
of the DMFC catalyst supported on porous materials”, Inter. J.
Hydrogen Energy., 28, 645 (2003)
[63] V. Rao, P.A. Simonov b, E.R. Savinova, G.V. Plaksin , S.V. Cherepanova,
G.N. Kryukova , U. Stimming , “The influence of carbon support porosity
on the activity of PtRu/Sibunit anode catalysts for methanol oxidation”,
J. Power Sources., 145, 178 (2005)
[64] S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, “On a theory
of the van der waals adsorption of gases”, J. Am. Chem. Soc., 62, 1723
(1940)
[65] G. Ertl, H. Knozinger and J. Weitkamp, “Handbook of Heterogeneous
Catalysis”, 3, 1508 (1997).
[66] 廖聖茹, 黃依蘋, 林仁章, 黃瑞呈,“多孔性奈米材料比面積/孔隙度檢測技術”,
工業材料, 190期, 115 (2002).
[67] H. Kim, J.N. Park, W.H. Lee, ”Preparation of platinum-based electrode
catalysts for low temperature fuel cell”, Catalysis Today., 87, 237
(2003)
[68] L. S. Sarma, T. D. Lin, Y.W. Tsai, J. M. Chen, B. J. Hwang, “Carbon-
supported Pt-Ru catalysts prepared by the Nafion stabilized alcohol-
reduction method for application in direct methanol fuel
cells”, J. Power Sources., 139, 44 (2005)
[69] W. H. Lizcano-Valbuena, V. A. Paganin, E. R. Gonzalez , “Methanol
electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C
catalysts”, Electrochimica Acta., 47, 3715 (2002)
[70] W. H. Lizcano-Valbuena, V. A. Paganin , Carlos A.P. Leite ,F. Galembeck ,
E. R. Gonzalez , ”Catalysts for DMFC: relation between morphology and
electrochemical performance”, Electrochimica Acta., 48, 3869 (2003)
[71] W. H. Lizcano-Valbuena, D. C. de Azevedo, E. R.Gonzalez, ”Supported
metal nanoparticles as electrocatalysts for low-temperature fuel cells,
Electrochimica Acta., 49, 1289 (2004)
[72] T.C. Deivaraj and Jim Yang Lee, “Preparation of carbon-supported PtRu
nanoparticles for direct methanol fuel cell applications – a comparative
study”, J. Power Sources., 142, 43 (2005)
[73] Z. Zhou, W. Zhou, S. Wang , G. Wang , L. Jiang ,H. Li , G. Sun, Q. Xin,
“Preparation of highly active 40 wt% Pt/C cathode electrocatalysts for
DMFC via different routes”, Catalysis Today., 93–95, 523 (2004)
[74] C. Roth, N. Martz, H. Fuess,” Characterization of different Pt–Ru
catalysts by X-ray diffraction and transmission electron
microscopy”, Phys. Chem. Chem. Phys., 3, 315 (2001)
[75] Y. Takasu , T. Kawaguchi, W. Sugimoto, Y. Murakami, “Effects of the
surface area of carbon support on the characteristics of
highly-dispersed Pt-Ru particles as catalysts for methanol oxidation”,
Electrochimica Acta., 48, 3861 (2003)
[76] M. Watanabe et al., J. Electroanal. Chem., 229, 395 (1987)
[77] X. Zhang, K.Y. Chan , “Water-in-Oil Microemulsion Synthesis of Platinum-
Ruthenium Nanoparticles, Their Characterization and Electrocatalytic
Properties”,Chem. Mater., 15, 451 (2003)
[78] Z. Liu, L. M. Gan, L. Hong, W. Chen, J. Y. Lee,“Carbon-supported Pt
nanoparticles as catalysts for proton exchange membrane fuel
cells”, J. Power Sources., 139, 73 (2005)
[79] Z. He, J. Chen, D. Liu, H. Tang, W. Deng, Y. Kuang, “Deposition and
electrocatalytic properties of platinum nanoparticals oncarbon nanotubes
for methanol electrooxidation”, Mater.Chem. Phys., 85, 396 (2004)
[80] Y. T. Kho, S. Srinivasan, “Mass Transport Phenomens in Proton Exchange
Membrane Fuel Cells Using O2/He,O2/Ar and O2/N2 Mixture Ⅱ Theoretical
Analysis”, J. Electrochem.Soc., 141, 2089 (1994)
[81] T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for
the Flooded-Agglomerate Model of Porous Gas-Diffusion Electrodes”, J.
Electrohem. Soc., 136, 1594 (1989)
[82] K. W. Park, B. K. Kwon, J. H. Choi, Y. M. Kim, Y. E. Sung, “New RuO2 and
carbon-RuO2 composite diffusion layer for use in direct methanol fuel
cells”, J. Power Sources., 439, 109 (2002)
[83] T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, “Novel method
for investigation of two-phase flow in liquid feed direct methanol fuel
cells using an aqueous H2O2 solution” ,J. Power Sources, 125, 1 (2004)
[84] J. Kim, S. M. Lee, S. Srinivasan, “Modeling of Proton Exchange Membrane
Fuel Cell Performance with an Empirical Equation”, J. Electrochem. Soc.,
142, 2670 (1995)
[85] M. D. Bernardi, M. W. Verbrugge,” A Mathematical Model of the Solid-
Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., 139,
2477 (1992)
[86] 李振彬,直接甲醇燃料電池中陽極觸媒層效能之改良, 國立成功大
學化學工程學系碩士論文 (2005)
[87] L. Dubau, F. Hahn, C. Coutanceau, J.-M. Le´ger, C. Lamy, “On the
structure effects of bimetallic PtRu electrocatalysts towards methanol
oxidation”, J. Electroanal. Chem., 554-555, 407 (2003)
[88] P. Sivakumar, R. Ishak, V. Tricoli, “Novel Pt–Ru nanoparticles formed
by vapour deposition as efficient electrocatalyst for methanol oxidation
Part I. Preparation and physical characterization”,
Electrochimica Acta., 50, 3312 (2005)